×

zbMATH — the first resource for mathematics

A lattice-point problem. (English) Zbl 0135.10601

Keywords:
number theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York, 1956. · Zbl 0070.29002
[2] C. S. Herz, On the number of lattice points in a convex set, Amer. J. Math. 84 (1962), 126 – 133. · Zbl 0113.03703 · doi:10.2307/2372808 · doi.org
[3] Edmund Hlawka, Über Integrale auf konvexen Körpern. I, Monatsh. Math. 54 (1950), 1 – 36 (German). · Zbl 0036.30902 · doi:10.1007/BF01304101 · doi.org
[4] E. Krätzel, Ein Gitterpunktsproblem, Acta Arith 10 (1964/1965), 215 – 223 (German). · Zbl 0131.29004
[5] Edmund Landau, Zur analytischen Zahlentheorie der definiten quadratischen Formen, S.-B. Königlich Preuss. Akad. Wiss. 31 (1915), 458-476. · JFM 45.0334.09
[6] Walter Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766 – 770. · Zbl 0143.34701
[7] J. G. van der Corput, Zahlentheoretische Abschätzungen mit Anwendung auf Gitterpunktprobleme, Math. Z. 17 (1923), no. 1, 250 – 259 (German). · JFM 49.0130.01 · doi:10.1007/BF01504346 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.