Helson, H.; Kahane, J. P. A Fourier method in diophantine problems. (English) Zbl 0135.10804 J. Anal. Math. 15, 245-262 (1965). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 11 Documents Keywords:number theory × Cite Format Result Cite Review PDF Full Text: DOI References: [1] W. G. Bade and P. C. Curtis, Jr.: Embedding theorems for commutative Banach algebras,Pac. J. Math. (to appear). · Zbl 0156.37002 [2] Erdös, P.; Taylor, S. J., On the set of points of convergence …, Proc. London Math. Soc., 7, 598-615 (1957) · Zbl 0111.26801 · doi:10.1112/plms/s3-7.1.598 [3] Furstenberg, H., Strict Ergodicity and Transformation of torus, Amer. J. Math., 83, 573-601 (1961) · Zbl 0178.38404 · doi:10.2307/2372899 [4] J.-P. Kahane and R. Salem: Ensembles parfaits et sêries trigonomêtriques, Paris 1963 · Zbl 0112.29304 [5] Kahane, J.-P.; Weiss, G. M., On lacunary power series, Arkiv för Matematik, 5, 1-26 (1963) · Zbl 0134.05701 · doi:10.1007/BF02591111 [6] J. F. Koksma: Diophantische Approximationen,Ergeb. Math., Vol. 4, Berlin 1936 · JFM 62.0173.01 [7] W. Rudin: Fourier Analysis on Groups, New York 1962. · Zbl 0107.09603 [8] Salem, R., On sets of multiplicity for trigonometrical series, Amer. J. Math., 64, 531-538 (1942) · Zbl 0060.18603 · doi:10.2307/2371702 [9] R. Salem: Algebraic integers and Fourier series. Boston 1963. · Zbl 0126.07802 [10] Vijayaraghavan, T., On the fractional parts of powers of a number, IV, J. of the Indian Math. Soc., 11, 33-39 (1947) · Zbl 0031.11502 [11] H. Weyl: Ueber die Gleichverteilung von Zahlen mod. Eins,Math. Ann.77 (1916). · JFM 46.0278.06 [12] A. Zygmund: Trigonometric Series, vol. 1, Cambridge 1959. · Zbl 0085.05601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.