zbMATH — the first resource for mathematics

Removable singularities of solutions of elliptic equations. (English) Zbl 0135.15601

Full Text: DOI
[1] Carleson, L., Selected Problems on Exceptional Sets. Uppsala 1961. · Zbl 0189.10903
[2] Gilbarg, D., & J. Serrin, On isolated singularities of solutions of second order elliptic differential equations. J. d’Analyse Math. 4, 309–340 (1956). · Zbl 0071.09701
[3] Kellogg, O. D., Foundations of Potential Theory. Berlin: Springer 1929. · JFM 55.0282.01
[4] Ladyzhenskaya, O. A., & N. N. Uraltseva, Quasi-linear elliptic equations and variational problems with many independent variables. Uspehi Mat. Nauk 16, 19–92 (1961); translated in Russian Math. Surveys 16, 17–91 (1961).
[5] Littman, W., G. Stampacchia, & H. Weinberger, Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa, Ser. III 17, 45–79 (1963). · Zbl 0116.30302
[6] Nirenberg, L., On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 1–48 (1959). · Zbl 0088.07601
[7] Picone, M., Sur la théorie d’un équation aux dérivées partielles classique de la physique mathématique. Comptes Rendus, Paris 226, 1945–1947 (1948). Cf. also, Sulle singularità delle soluzioni di una classica equazione a derivate parziali delle fisica matematica. Atti 3 Congr. U.M.I., pp. 69–71, Rome, 1951.
[8] Schauder, J., Über lineare elliptische Differentialgleichungen zweiter Ordnung. Math. Z. 38, 257–282 (1934). · Zbl 0008.25502
[9] Serrin, J., On the Harnack inequality for linear elliptic equations. J. d’Analyse Math. 4, 292–308 (1956). · Zbl 0070.32302
[10] Serrin, J., Local behavior of solutions of quasi-linear equations. Acta Math. (to appear). · Zbl 0128.09101
[11] Wallin, H., A connection b · Zbl 0135.32401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.