A connection between \(\alpha\)-capacity and \(L^ p\)-classes of differentiable functions. (English) Zbl 0135.32401

Full Text: DOI


[1] Calderon, A. P., andZygmund, A., On the existence of certain singular integrals. Acta Math.88, 85–139 (1952). · Zbl 0047.10201 · doi:10.1007/BF02392130
[2] Fuglede, B., Extremal length and functional completion. Acta Math.98, 171–219 (1957). · Zbl 0079.27703 · doi:10.1007/BF02404474
[3] Fuglede, B., On generalized potentials of functions in the Lebesgue classes. Math. Scand.8, 287–304 (1960). · Zbl 0196.42002
[4] du Plessis, N., A theorem about fractional integrals. Proc. Amer. Math. Soc.3, 892–898 (1952). · Zbl 0048.03802 · doi:10.1090/S0002-9939-1952-0051909-2
[5] du Flessis, N., Some theorems about the Riesz fractional integral. Trans. Amer. Math. Soc.80, 124–134 (1955). · Zbl 0067.28101
[6] Serrin, J., Local behaviour of solutions of quasi-linear equations. Acta Math.111, 247–302 (1964). · Zbl 0128.09101 · doi:10.1007/BF02391014
[7] Wallin, H., Continuous functions and potential theory. Arkiv Matematik, vol.5, No. 5, 55–84 (1963). · Zbl 0134.09404 · doi:10.1007/BF02591115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.