×

Extremal solutions of a control system. (English) Zbl 0135.32802


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Blackwell, D, The range of certain vector integrals, (), 390-395 · Zbl 0044.27702
[2] Dunford, N; Schwartz, J.T, Linear operators, part I, (1958), Interscience New York
[3] Filippov, A.F, Differential equations with multi-valued discontinuous righthand side, Dokl. akad. nauk SSSR, 151, 65-68, (1963), (in Russian)
[4] {\scHalkin, H.}, A generalization of LaSalle’s “bang-bang” principle. J. Soc. Ind. Appl. Math., in press.
[5] Halmos, P.R, Measure theory, (1954), Van Nostrand Princeton, New Jersey · Zbl 0117.10502
[6] Kurzweil, J, On the linear theory of optimal control systems, C̆asopis Pěst. mat., 89, 90-101, (1964), (in Russian)
[7] La Salle, J.P, The time optimal control problem, (), 1-24
[8] Liapunov, A.A, Sur LES fonctions-vecteurs completement additives, Izv. akad. nauk SSSR, ser. mat., 8, 465-478, (1940) · Zbl 0024.38504
[9] Neustadt, L.W, The existence of optimal controls in the absence of convexity conditions, J. math. anal. appl., 7, 110-117, (1963) · Zbl 0115.13304
[10] {\scOlech, C.}, A contribution to the time optimal control problem.
[11] Olech, C, A note concerning extremal points of a convex set, Bull. acad. polon. sci., ser. sci. math. astron. phys., 13, 347-351, (1965) · Zbl 0136.18805
[12] Olech, C, A note concerning set-valued measurable functions, Bull. acad. polon. sci., ser. sci. math. astron. phys., 13, 317-321, (1965) · Zbl 0145.28302
[13] Pliś, A, Remark on measurable set-valued functions, Bull. acad. polon. sci., ser. sci. math. astron. phys., 9, 857-859, (1961) · Zbl 0101.04303
[14] Pontryagin, L.S; Boltyanski, V.G; Gamkrelidze, R.V; Mishchenko, E.F, The mathematical theory of optimal control, (1961), (in Russian). English translation: Interscience, New York, 1962
[15] Roxin, E, Pontryagin’s maximum principle, (), 303-324 · Zbl 0139.04808
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.