A generalization of the Alaoglu-Bourbaki theorem and its applications. (English) Zbl 0135.34402

Full Text: DOI EuDML


[1] Bellman, R., andK. Fan: On systems of linear inequalities in Hermitian matrix variables. Proceedings of symposia in pure mathematics, Vol. 7, Convexity, p. 1-11 (edited byV. L. Klee). Providence: Amer. Math. Soc. 1963.
[2] Bourbaki, N.: Espaces vectoriels topologiques. Paris: Hermann 1953/1955. · Zbl 0050.10703
[3] Choquet, G.: Ensembles et cônes convexes faiblement complets. C.R. Acad. Sci., Paris254, 1908-1910 (1962). · Zbl 0107.08801
[4] Duffin, R. J.: Infinite programs. Linear inequalities and related systems, p. 157-170 (edited byH. W. Kuhn andA. W. Tucker). Princeton: University Press 1956. · Zbl 0072.37603
[5] Fan, K.: On systems of linear inequalities. Linear inequalities and related systems, p. 99-156 (edited byH. W. Kuhn andA. W. Tucker). Princeton: University Press 1956. · Zbl 0072.37602
[6] ? Existence theorems and extreme solutions for inequalities concerning convex functions or linear transformations. Math. Z.68, 205-216 (1957). · Zbl 0078.10204 · doi:10.1007/BF01160340
[7] Gale, D., H. W. Kuhn, andA. W. Tucker: Linear programming and the theory of games. Activity analysis of production and allocation, p. 317-329 (edited byT. C. Koopmans). New York: John Wiley 1951.
[8] Klee, V. L.: Extremal structure of convex sets. Arch. Math.8, 234-240 (1957). · Zbl 0079.12501 · doi:10.1007/BF01899998
[9] Köthe, G.: Topologische lineare Räume I. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0093.11901
[10] Kretschmer, K. S.: Programmes in paired spaces. Canadian J. Math.13, 221-238 (1961). · Zbl 0097.14705 · doi:10.4153/CJM-1961-019-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.