Fleming, W. H. Flat chains over a finite coefficient group. (English) Zbl 0136.03602 Trans. Am. Math. Soc. 121, 160-186 (1966). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 59 Documents Keywords:differentiation and integration, measure theory PDF BibTeX XML Cite \textit{W. H. Fleming}, Trans. Am. Math. Soc. 121, 160--186 (1966; Zbl 0136.03602) Full Text: DOI OpenURL References: [1] A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions. I, II, Proc. Cambridge Philos. Soc. 41 (1945), 103-110; 42 (1946), 1-10. · Zbl 0063.00352 [2] Herbert Federer, The (\?,\?) rectifiable subsets of \?-space, Trans. Amer. Soc. 62 (1947), 114 – 192. · Zbl 0032.14902 [3] Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458 – 520. · Zbl 0187.31301 [4] Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. · Zbl 0083.28204 [5] William P. Ziemer, Integral currents \?\?\? 2, Trans. Amer. Math. Soc. 105 (1962), 496 – 524. · Zbl 0136.03603 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.