×

zbMATH — the first resource for mathematics

Hall-order differentials on Riemann surfaces. (English) Zbl 0136.06701

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahlfors, L. V., Teichmüller spaces.Proc. Intern. Congr. Math., Stockholm 1962, 3–9. · Zbl 0118.07405
[2] Appell, P. & Goursat, E.,Théorie des fonctions algébriques, t. II. Paris 1930.
[3] Bergman, S., Über die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonalfunktionen.Math. Ann., 86 (1922), 238–271. · JFM 48.1236.02
[4] –,The kernel function and conformal mapping. Amer. Math. Soc. Survey, New York 1950. · Zbl 0040.19001
[5] Bergman, S. &Schiffer, M., Kernel functions and conformal mapping.Compositio Math., 8 (1951), 205–249. · Zbl 0043.08403
[6] Bers, L., Spaces of Riemann surfaces.Proc. Intern. Congr. Math., Edinburgh 1958, 349–361.
[7] Bers, L., Automorphic forms and general Teichmüller spaces.Proc. Conf. Complex Anal., Minneapolis, 1964, 109–113.
[8] Courant, R.,Dirichlet’s principle, conformal mapping and minimal surfaces. Appendix by M. Schiffer. New York 1950. · Zbl 0040.34603
[9] Garabedian, P. R., Schwarz’s lemma and the Szegö kernel function.Trans. Amer. Math. Soc., 67 (1949), 1–35. · Zbl 0035.05402
[10] Hensel, K. & Landsberg, G.,Theorie der algebraischen Funktionen einer Variabeln. Leipzig 1902. · Zbl 0199.09902
[11] Hille, E., Remarks on a paper by Zeev Nehari.Bull. Amer. Math. Soc., 55 (1949), 552–553. · Zbl 0035.05105
[12] Krazer, A.,Lehrbuch der Thetafunktionen. Leipzig 1903.
[13] Nehari, Z., The Schwarzian derivative and schlicht functions.Bull. Amer. Math. Soc., 55 (1949), 545–551. · Zbl 0035.05104
[14] Schiffer, M., Hadamard’s formula and variation of domain functions.Amer. J. Math., 68 (1946), 417–448. · Zbl 0060.23706
[15] –, Faber polynomials in the theory of univalent functions.Bull. Amer. Math. Soc., 54 (1948), 503–517. · Zbl 0033.36301
[16] –, Various types of orthogonalization.Duke Math. J., 17, (1950), 329–366. · Zbl 0039.08602
[17] Schiffer, M., Variational methods in the theory of Rieman surfaces.Contributions to the theory of Riemann surfaces, Princeton 1953, 15–30. · Zbl 0052.08204
[18] Schiffer, M. &Hawley, N. S., Connections and conformal mapping.Acta Math., 107 (1962), 175–274. · Zbl 0115.29301
[19] Schiffer, M. & Spencer, D. C., A variational calculus for Riemann surfaces.Ann. Acad. Scient. Fenn. Ser. A I, 93, Helsinki 1951. · Zbl 0044.08401
[20] Schiffer, M. & Spencer, D. C. Functionals of finite Riemann surfaces. Princeton 1954. · Zbl 0059.06901
[21] Szegö, G., Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören.Math. Z., 9 (1921), 218–270. · JFM 48.0374.04
[22] Weyl, H.,Die Idee der Riemannschen Fläche. 3. Aufl., Stuttgart 1955. · Zbl 0068.06001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.