×

zbMATH — the first resource for mathematics

Functions satisfying a weighted average property. (English) Zbl 0136.09404

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Stefan Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. · Zbl 0040.19001
[2] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. · Zbl 0051.28802
[3] Bernard Epstein, On the mean-value property of harmonic functions, Proc. Amer. Math. Soc. 13 (1962), 830. · Zbl 0109.07501
[4] Leopold Flatto, Functions with a mean value property, J. Math. Mech. 10 (1961), 11 – 18. · Zbl 0097.30605
[5] Avner Friedman and Walter Littman, Bodies for which harmonic functions satisfy the mean value property, Trans. Amer. Math. Soc. 102 (1962), 147 – 166. · Zbl 0103.32101
[6] Avner Friedman and Walter Littman, Functions satsifying the mean value property, Trans. Amer. Math. Soc. 102 (1962), 167 – 180. · Zbl 0103.32201
[7] Avner Friedman, Mean-values and polyharmonic polynomials, Michigan Math. J. 4 (1957), 67 – 74. · Zbl 0077.09804
[8] O. D. Kellogg, Foundations of potential theory, Dover, New York, 1929. · JFM 55.0282.01
[9] Louis Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math. 6 (1953), 167 – 177. · Zbl 0050.09601
[10] E. F. Beckenbach and Maxwell Reade, Mean-values and harmonic polynomials, Trans. Amer. Math. Soc. 53 (1943), 230 – 238. · Zbl 0063.00272
[11] J. L. Walsh, A mean value theorem for polynomials and harmonic polynomials, Bull. Amer. Math. Soc. 42 (1936), no. 12, 923 – 930. · Zbl 0016.12302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.