×

zbMATH — the first resource for mathematics

Some remarks on vector analysis. (English) Zbl 0136.16503
MSC:
53A45 Differential geometric aspects in vector and tensor analysis
58A10 Differential forms in global analysis
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Browder, F.: Functional analysis and partial differential equations. I. Math. Annalen138, 55-79 (1959). · Zbl 0086.10301 · doi:10.1007/BF01369666
[2] Conner, P.: The Neumann’s problem for differential forms on Riemannian manifolds. Memoir 20. Amer. Math. Soc., 1956. · Zbl 0070.31404
[3] Deny, J., etJ. Lions: Les espaces du type de Beppo Levi. Annales Inst. Fourier5, 305-370 (1955). · Zbl 0065.09903
[4] Dezin, A.: Invariant differential operators and boudary value problems. Trudy Mat. Inst. Steklova 68, 1962.
[5] Duff, G.: Differential forms in manifolds with boundary. Annals of Math.,56, 115-127 (1952). · Zbl 0049.18804 · doi:10.2307/1969770
[6] ?, andD. Spencer: Harmonic tensors on Riemannian manifolds with boundary. Annals of Math.56, 128-156 (1952). · Zbl 0049.18901 · doi:10.2307/1969771
[7] Dunford, N., J. Schwartz: Linear operators, Part II. New York: Wiley 1963. · Zbl 0128.34803
[8] Flanders, H.: Differential forms. New York: Academic Press 1963. · Zbl 0112.32003
[9] Friedrichs, K.: Differential forms on Riemannian manifolds. Comm. Pure Appl. Math.8, 551-590 (1955). · Zbl 0066.07504 · doi:10.1002/cpa.3160080408
[10] Gaffney, M.: Hilbert space methods in the theory of harmonic integrals. Trans. Amer. Math. Soc.78, 426-444 (1955). · Zbl 0064.34303 · doi:10.1090/S0002-9947-1955-0068888-1
[11] Gelfand, I., andN. Vilenkin: Generalized functions, Vol. 4. Moscow: 1961.
[12] Goldberg, S.: Curvature and homology. New York: Academic Press 1962. · Zbl 0105.15601
[13] Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962. · Zbl 0111.18101
[14] Hörmander, L.: On the theory of general partial differential operators. Acta Math.94, 161-248 (1955). · Zbl 0067.32201 · doi:10.1007/BF02392492
[15] ?: Definitions of maximal differential operators. Arkiv for Math.3, 501-504 (1958). · Zbl 0131.09403 · doi:10.1007/BF02589511
[16] Kodaira, K.: Harmonic fields in Riemannian manifolds. Annals of Math.50, 587-664 (1949). · Zbl 0034.20502 · doi:10.2307/1969552
[17] Kohn, J.: Harmonic integrals on strongly pseudo convex manifolds. I. Annals of Math.78, 112-148 (1963). · Zbl 0161.09302 · doi:10.2307/1970506
[18] Kohn, J.: Seminar notes. Princeton University, 1961.
[19] Krein, S.: On the functional properties of the operators of vector analysis and hydrodynamics. Doklady Akad. Nauk SSSR93, 969-972 (1953).
[20] Krein, M.: The theory of self adjoint extensions of semi bounded hermitian operators and applications. I. Mat. Sbornik20, 431-490 (1947). · Zbl 0029.14103
[21] Morrey, C.: A variational method in the theory of harmonic integrals. II. Amer. J. of Math.58, 137-169 (1956). · Zbl 0070.31402 · doi:10.2307/2372488
[22] Müller, C.: Über die Grundoperationen der Vektoranalysis. Math. Annalen124, 427-449 (1952). · Zbl 0047.40101 · doi:10.1007/BF01343579
[23] Nagy, B. Sz.: Spektraldarstellung linearer Transformationen des Hilbertschen Raumes. Berlin: Springer 1942. · JFM 68.0241.01
[24] Nickerson, H., D. Spencer, andN. Steenrod: Advanced calculus. Princeton: Van Nostrand 1959.
[25] Peetre, J.: Une caracterisation abstraite des opérateurs différentiels. Math. Scand.7, 211-218 (1959);? Rectification. Math. Scand.8, 116-120 (1960). · Zbl 0089.32502
[26] Rham, G. de: Variétés différentiables. Paris: Hermann 1955.
[27] Schwartz, L.: Théorie des distributions, Vols. 1-2. Paris: Hermann 1950/51.
[28] Truesdell, C.: The kinematics of vorticity. Bloomington: Indiana Univ. Press 1954. · Zbl 0056.18606
[29] Weyl, H.: The method of orthogonal projektion in potential theory. Duke Math. J.7, 411-444 (1940). · Zbl 0026.02001 · doi:10.1215/S0012-7094-40-00725-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.