×

zbMATH — the first resource for mathematics

The geometry of \(G\)-structures. (English) Zbl 0136.17804

MSC:
53Cxx Global differential geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lars V. Ahlfors, The theory of meromorphic curves, Acta Soc. Sci. Fennicae. Nova Ser. A. 3 (1941), no. 4, 31. · Zbl 0061.15206
[2] Yasuo Akizuki and Shigeo Nakano, Note on Kodaira-Spencer’s proof of Lefschetz theorems, Proc. Japan Acad. 30 (1954), 266 – 272. · Zbl 0059.14701
[3] A. D. Alexandrow, Die innere Geometrie der konvexen Flächen, Akademie-Verlag, Berlin, 1955 (German). · Zbl 0065.15102
[4] Carl B. Allendoerfer and André Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101 – 129. · Zbl 0060.38102
[5] W. Ambrose and I. M. Singer, A theorem on holonomy, Trans. Amer. Math. Soc. 75 (1953), 428 – 443. · Zbl 0052.18002
[6] Aldo Andreotti, On the complex structures of a class of simply-connected manifolds, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 53 – 77. · Zbl 0141.37404
[7] A. Andronov and L. Pontrjagin, Systèmes grossiers, C.R. Acad. Sci. Paris 14 (1937), 247-250. · JFM 63.0728.01
[8] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181 – 207. · Zbl 0078.16002
[9] M. F. Atiyah, Some examples of complex manifolds, Bonn. Math. Schr. no. 6 (1958), 28. · Zbl 0080.37502
[10] Michael Atiyah and Raoul Bott, On the periodicity theorem for complex vector bundles, Acta Math. 112 (1964), 229 – 247. · Zbl 0131.38201 · doi:10.1007/BF02391772 · doi.org
[11] M. F. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276 – 281. · Zbl 0142.40901
[12] M. F. Atiyah and F. Hirzebruch, Charakteristische Klassen und Anwendungen, Enseignement Math. (2) 7 (1961), 188 – 213 (1962) (German). · Zbl 0104.39801
[13] M. F. Atiyah and I. M. Singer, The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422 – 433. · Zbl 0118.31203
[14] Thomas F. Banchoff, Tightly embedded 2-dimensional polyhedral manifolds, Amer. J. Math. 87 (1965), 462 – 472. · Zbl 0136.21005 · doi:10.2307/2373013 · doi.org
[15] Marcel Berger, Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. France 88 (1960), 57 – 71 (French). · Zbl 0096.15503
[16] M. Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa (3) 15 (1961), 179 – 246 (French). · Zbl 0101.14201
[17] M. Berger, Les variétés remanniennes dont la courbure satisfait certaines conditions, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 447 – 456 (French).
[18] Daniel Bernard, Sur la géométrie différentielle des \?-structures, Ann. Inst. Fourier Grenoble 10 (1960), 151 – 270 (French). · Zbl 0095.36406
[19] Lipman Bers, Spaces of Riemann surfaces, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 349 – 361. · Zbl 0083.20501
[20] Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. · Zbl 0984.53001
[21] R. L. Bishop and S. I. Goldberg, On the second cohomology group of a Kaehler manifold of positive curvature, Proc. Amer. Math. Soc. 16 (1965), 119 – 122. · Zbl 0125.39403
[22] R. L. Bishop and S. I. Goldberg, Rigidity of positively curved Kaehler manifolds, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1037 – 1041. R. L. Bishop and S. I. Goldberg, On the topology of positively curved Kaehler manifolds. II, Tôhoku Math. J. (2) 17 (1965), 310 – 318. · Zbl 0134.17906 · doi:10.2748/tmj/1178243552 · doi.org
[23] André Blanchard, Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup. (3) 73 (1956), 157 – 202 (French). · Zbl 0073.37503
[24] W. Blaschke and G. Bol, Geometrie der Gewebe, Springer, Berlin, 1938. · JFM 64.0727.03
[25] Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115 – 207 (French). · Zbl 0052.40001 · doi:10.2307/1969728 · doi.org
[26] A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409 – 448 (French). · Zbl 0050.39603 · doi:10.2307/2372495 · doi.org
[27] Armand Borel and Jean-Pierre Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958), 97 – 136 (French). · Zbl 0091.33004
[28] Raoul Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35 – 61. · Zbl 0096.17701
[29] Raoul Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313 – 337. · Zbl 0129.15601 · doi:10.2307/1970106 · doi.org
[30] Raoul Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), 71 – 112. · Zbl 0148.31906 · doi:10.1007/BF02391818 · doi.org
[31] Eugenio Calabi, On compact, Riemannian manifolds with constant curvature. I, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 155 – 180. · Zbl 0129.14102
[32] Élie Cartan, Sur la structure des groupes infinis de transformation, Ann. Sci. École Norm. Sup. (3) 21 (1904), 153 – 206 (French). · JFM 35.0176.04
[33] Elie Cartan, Les sous-groupes des groupes continus de transformations, Ann. Sci. École Norm. Sup. (3) 25 (1908), 57 – 194 (French). · JFM 39.0206.04
[34] Elie Cartan, Les groupes de transformations continus, infinis, simples, Ann. Sci. École Norm. Sup. (3) 26 (1909), 93 – 161 (French). · JFM 40.0193.02
[35] E. Cartan, sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Polon. Math. 6 (1927), 1-7 ( = Oeuvres complètes, Partie III, pp. 1091-1097). · JFM 54.0763.05
[36] E. Cartan, Les problèmes d’équivalence, Oeuvres complètes, Partie II, 1311-1334.
[37] E. Cartan, La structure des groupes infinis, Oeuvres complètes, Partie II, 1335-1384.
[38] Henri Cartan, Variétés analytiques complexes et cohomologie, Colloque sur les fonctions de plusieurs variables, tenu à Bruxelles, 1953, Georges Thone, Liège; Masson & Cie, Paris, 1953, pp. 41 – 55 (French). · Zbl 0053.05301
[39] Shiing-shen Chern, On the curvatura integra in a Riemannian manifold, Ann. of Math. (2) 46 (1945), 674 – 684. · Zbl 0060.38104 · doi:10.2307/1969203 · doi.org
[40] Shiing-shen Chern, Differential geometry of fiber bundles, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., 1952, pp. 397 – 411.
[41] Shiing-Shen Chern, Pseudo-groupes continus infinis, Géométrie différentielle., Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, vol. 1953, Centre National de la Recherche Scientifique, Paris, 1953, pp. 119 – 136 (French). · Zbl 0053.01604
[42] Shiing-shen Chern, On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955), 117 – 126. · Zbl 0066.17003 · doi:10.1007/BF02960745 · doi.org
[43] Shiing-shen Chern, On a generalization of Kähler geometry, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 103 – 121. · Zbl 0078.14103
[44] Shiing-shen Chern and Richard K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 306 – 318. · Zbl 0078.13901 · doi:10.2307/2372684 · doi.org
[45] Shiing-shen Chern, Complex analytic mappings of Riemann surfaces. I, Amer. J. Math. 82 (1960), 323 – 337. · Zbl 0103.30104 · doi:10.2307/2372738 · doi.org
[46] Shiing-shen Chern, The integrated form of the first main theorem for complex analytic mappings in several complex variables, Ann. of Math. (2) 71 (1960), 536 – 551. · Zbl 0142.04802 · doi:10.2307/1969943 · doi.org
[47] Shiing-shen Chern, Minimal surfaces in an Euclidean space of \? dimensions, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 187 – 198. · Zbl 0136.16701
[48] Manfredo P. do Carmo, The cohomology ring of certain kählerian manifolds, Ann. of Math. (2) 81 (1965), 1 – 14. · Zbl 0132.16703 · doi:10.2307/1970378 · doi.org
[49] N. W. Efimow, Flächenverbiegung im Grossen, Akademie-Verlag, Berlin, 1957 (German). · Zbl 0077.15403
[50] Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, 1951, pp. 29 – 55 (French). · Zbl 0054.07201
[51] Charles Ehresmann, Sur la théorie des variétés feuilletées, Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat. e Appl. (5) 10 (1951), 64 – 82 (French). · Zbl 0044.38101
[52] Theodore Frankel, Manifolds with positive curvature, Pacific J. Math. 11 (1961), 165 – 174. · Zbl 0107.39002
[53] Alfred Frölicher and Albert Nijenhuis, A theorem on stability of complex structures, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 239 – 241. · Zbl 0078.14201
[54] Roger Godement, Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). · Zbl 0080.16201
[55] Samuel I. Goldberg, Curvature and homology, Pure and Applied Mathematics, Vol. XI, Academic Press, New York-London, 1962. · Zbl 0105.15601
[56] Morikuni Goto, On algebraic homogeneous spaces, Amer. J. Math. 76 (1954), 811 – 818. · Zbl 0056.39803 · doi:10.2307/2372654 · doi.org
[57] D. Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären, Dissertation, Univ. of Bonn, Bonn, 1964. · Zbl 0135.40301
[58] Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. · Zbl 0141.08601
[59] André Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958), 248 – 329 (French). · Zbl 0085.17303 · doi:10.1007/BF02564582 · doi.org
[60] André Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 367 – 397 (French). · Zbl 0122.40702
[61] Philip Hartman and Aurel Wintner, On the embedding problem in differential geometry, Amer. J. Math. 72 (1950), 553 – 564. · Zbl 0038.33403 · doi:10.2307/2372053 · doi.org
[62] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[63] Noel J. Hicks, Notes on differential geometry, Van Nostrand Mathematical Studies, No. 3, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965.
[64] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Zweite ergänzte Auflage. Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962 (German). · Zbl 0101.38301
[65] Friedrich Hirzebruch, Über eine Klasse von einfachzusammenhängenden komplexen Mannigfaltigkeiten, Math. Ann. 124 (1951), 77 – 86 (German). · Zbl 0043.30302 · doi:10.1007/BF01343552 · doi.org
[66] F. Hirzebruch, Komplexe Mannigfaltigkeiten, Proc. Internat. Congress Math. 1958., Cambridge Univ. Press, New York, 1960, pp. 119 – 136 (German).
[67] F. Hirzebruch and K. Kodaira, On the complex projective spaces, J. Math. Pures Appl. (9) 36 (1957), 201 – 216. · Zbl 0090.38601
[68] W. V. D. Hodge, The theory and applications of harmonic integrals, Cambridge, at the University Press, 1952. 2d ed. · Zbl 0048.15702
[69] Wilfred Kaplan, Regular curve-families filling the plane, I, Duke Math. J. 7 (1940), 154 – 185. · Zbl 0024.19001
[70] Wilhelm Klingenberg, Eine Kennzeichnung der Riemannschen sowie der Hermiteschen Mannigfaltigkeiten, Math. Z. 70 (1958/1959), 300 – 309 (German). · Zbl 0116.39301 · doi:10.1007/BF01558595 · doi.org
[71] W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. (2) 69 (1959), 654 – 666. · Zbl 0133.15003 · doi:10.2307/1970029 · doi.org
[72] Wilhelm Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv. 35 (1961), 47 – 54 (German). · Zbl 0133.15005 · doi:10.1007/BF02567004 · doi.org
[73] Wilhelm Klingenberg, On the topology of Riemannian manifolds where the conjugate points have a similar distribution as in symmetric spaces of rank 1, Bull. Amer. Math. Soc. 69 (1963), 95 – 100. · Zbl 0108.34704
[74] Wilhelm Klingenberg, Neue Methoden und Ergebnisse in der Riemannschen Geometrie, Jber. Deutsch. Math.-Verein. 66 (1963/1964), no. Abt. 1, 85 – 94 (German). · Zbl 0128.16103
[75] Shoshichi Kobayashi, Topology of positively pinched Kaehler manifolds, Tôhoku Math. J. (2) 15 (1963), 121 – 139. · Zbl 0114.37601 · doi:10.2748/tmj/1178243839 · doi.org
[76] Shoshichi Kobayashi and Tadashi Nagano, On a fundamental theorem of Weyl-Cartan on \?-structures, J. Math. Soc. Japan 17 (1965), 84 – 101. · Zbl 0136.17805 · doi:10.2969/jmsj/01710084 · doi.org
[77] Shoshichi Kobayashi and Tadashi Nagano, On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875 – 907. · Zbl 0142.19504
[78] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. · Zbl 0091.34802
[79] K. Kodaira, On cohomology groups of compact analytic varieties with coefficients in some analytic faisceaux, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 865 – 868. · Zbl 0051.14502
[80] K. Kodaira, On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1268 – 1273. · Zbl 0053.11701
[81] K. Kodaira, On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math. (2) 60 (1954), 28 – 48. · Zbl 0057.14102 · doi:10.2307/1969701 · doi.org
[82] K. Kodaira and D. C. Spencer, Groups of complex line bundles over compact Kähler varieties, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 868 – 872. · Zbl 0051.14503
[83] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328 – 466. · Zbl 0128.16901 · doi:10.2307/1970009 · doi.org
[84] Vivian Yoh Kraines, Topology of quaternionic manifolds, Bull. Amer. Math. Soc. 71 (1965), 526 – 527. · Zbl 0134.18001
[85] Nicolaas H. Kuiper, On \?\textonesuperior -isometric imbeddings. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 545 – 556, 683 – 689. · Zbl 0067.39601
[86] Masatake Kuranishi, On E. Cartan’s prolongation theorem of exterior differential systems, Amer. J. Math. 79 (1957), 1 – 47. · Zbl 0077.29701 · doi:10.2307/2372381 · doi.org
[87] M. Kuranishi, On the locally complete families of complex analytic structures, Ann. of Math. (2) 75 (1962), 536 – 577. · Zbl 0106.15303 · doi:10.2307/1970211 · doi.org
[88] M. Kuranishi, New proof for the existence of locally complete families of complex structures, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 142 – 154.
[89] S. Lang, Fonctions implicites et plongements riemanniens, Séminaire Bourbaki, No. 237, 1961-1962. · Zbl 0116.38405
[90] Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. · Zbl 0103.15101
[91] H. Lewy, On the existence of a closed convex surface realizing a given riemannian metric, Proc. Nat. Acad. Sci. U.S.A. 24 (1938), 104-106. · Zbl 0018.08803
[92] Harold I. Levine, A theorem on holomorphic mappings into complex projective space, Ann. of Math. (2) 71 (1960), 529 – 535. · Zbl 0142.04801 · doi:10.2307/1969942 · doi.org
[93] Paulette Libermann, Problèmes d’équivalence relatifs à une structure presque complexe sur une variété à quatre dimensions, Acad. Roy. Belgique. Bull. Cl. Sci. (5) 36 (1950), 742 – 755 (French). · Zbl 0057.38204
[94] André Lichnerowicz, Théorie globale des connexions et des groupes d’holonomie, Edizioni Cremonese, Roma, 1957 (French). · Zbl 0116.39101
[95] Elon L. Lima, Commuting vector fields on \?³, Ann. of Math. (2) 81 (1965), 70 – 81. · Zbl 0137.17801 · doi:10.2307/1970383 · doi.org
[96] J. Milnor, Lectures on characteristic classes, mimeographed notes, Univ. of Princeton, Princeton, N.J., 1958 (to appear).
[97] Jürgen Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824 – 1831. · Zbl 0104.30503
[98] S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401 – 404. · Zbl 0025.22704
[99] John Nash, \?\textonesuperior isometric imbeddings, Ann. of Math. (2) 60 (1954), 383 – 396. · Zbl 0058.37703 · doi:10.2307/1969840 · doi.org
[100] John Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20 – 63. · Zbl 0070.38603 · doi:10.2307/1969989 · doi.org
[101] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391 – 404. · Zbl 0079.16102 · doi:10.2307/1970051 · doi.org
[102] Johannes C. C. Nitsche, On new results in the theory of minimal surfaces, Bull. Amer. Math. Soc. 71 (1965), 195 – 270. · Zbl 0135.21701
[103] Albert Nijenhuis and William B. Woolf, Some integration problems in almost-complex and complex manifolds., Ann. of Math. (2) 77 (1963), 424 – 489. · Zbl 0115.16103 · doi:10.2307/1970126 · doi.org
[104] Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337 – 394. · Zbl 0051.12402 · doi:10.1002/cpa.3160060303 · doi.org
[105] Louis Nirenberg, Rigidity of a class of closed surfaces, Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962) Univ. of Wisconsin Press, Madison, Wis., 1963, pp. 177 – 193.
[106] S. P. Novikov, Foliations of codimension 1 on manifolds, Soviet Math. Dokl. 5 (1964), 540-544. · Zbl 0135.41402
[107] Robert Osserman, Global properties of minimal surfaces in \?³ and \?\(^{n}\), Ann. of Math. (2) 80 (1964), 340 – 364. · Zbl 0134.38502 · doi:10.2307/1970396 · doi.org
[108] Richard S. Palais, Seminar on the Atiyah-Singer index theorem, With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. · Zbl 0137.17002
[109] M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101 – 120. · Zbl 0107.07103 · doi:10.1016/0040-9383(65)90018-2 · doi.org
[110] Franklin P. Peterson, Some remarks on Chern classes, Ann. of Math. (2) 69 (1959), 414 – 420. · Zbl 0123.16502 · doi:10.2307/1970191 · doi.org
[111] I. R. Porteous, Blowing up Chern classes, Proc. Cambridge Philos. Soc. 56 (1960), 118 – 124. · Zbl 0166.16701
[112] Alexandre Preissman, Quelques propriétés globales des espaces de Riemann, Comment. Math. Helv. 15 (1943), 175 – 216 (French). · Zbl 0027.25903 · doi:10.1007/BF02565638 · doi.org
[113] Charles C. Pugh, The closing lemma, Amer. J. Math. 89 (1967), 956 – 1009. · Zbl 0167.21803 · doi:10.2307/2373413 · doi.org
[114] H. E. Rauch, A contribution to differential geometry in the large, Ann. of Math. (2) 54 (1951), 38 – 55. · Zbl 0043.37202 · doi:10.2307/1969309 · doi.org
[115] H. E. Rauch, Geodesies and curvature in differential geometry in the large, Yeshiva Univ., New York, 1959.
[116] Georges Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Ind., no. 1183, Hermann & Cie., Paris, 1952 (French). Publ. Inst. Math. Univ. Strasbourg 11, pp. 5 – 89, 155 – 156. · Zbl 0049.12602
[117] G. Reeb, Sur la théorie générale des systèmes dynamiques, Ann. Inst. Fourier, Grenoble 6 (1955 – 1956), 89 – 115 (French). · Zbl 0071.11001
[118] Georges Reeb, Sur les structures feuilletées de co-dimension un et sur un théorème de M. A. Denjoy, Ann. Inst. Fourier Grenoble 11 (1961), 185 – 200, xv (French). · Zbl 0136.20901
[119] G. de Rham, Variétés differentiables, Hermann, Paris, 1955.
[120] Arthur J. Schwartz, A generalization of a Poincaré-Bendixson theorem to closed two-dimensional manifolds, Amer. J. Math. 85 (1963), 453-458; errata, ibid 85 (1963), 753. · Zbl 0116.06803
[121] Herbert Seifert, Closed integral curves in 3-space and isotopic two-dimensional deformations, Proc. Amer. Math. Soc. 1 (1950), 287 – 302. · Zbl 0039.40002
[122] Jean-Pierre Serre, Un théorème de dualité, Comment. Math. Helv. 29 (1955), 9 – 26 (French). · Zbl 0067.16101 · doi:10.1007/BF02564268 · doi.org
[123] Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197 – 278 (French). · Zbl 0067.16201 · doi:10.2307/1969915 · doi.org
[124] J.-P. Serre, Représentations linéaires et espaces homogènes kähleriens des groupes de Lie compacts, Séminaire Bourbaki, No. 100, 1954. · Zbl 0121.16203
[125] Carl Ludwig Siegel, Note on the differential equations on the torus, Ann. of Math. (2) 46 (1945), 423 – 428. · Zbl 0061.19510 · doi:10.2307/1969161 · doi.org
[126] I. M. Singer and Shlomo Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups, J. Analyse Math. 15 (1965), 1 – 114. · Zbl 0277.58008 · doi:10.1007/BF02787690 · doi.org
[127] E. Spanier, The homology of Kummer manifolds, Proc. Amer. Math. Soc. 7 (1956), 155 – 160. · Zbl 0070.18105
[128] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. · Zbl 0054.07103
[129] Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. · Zbl 0129.13102
[130] O. Veblen and J. H. C. Whitehead, The foundations of differential geometry, Cambridge Univ. Press, New York, 1932. · Zbl 0005.21801
[131] Konrad Voss, Differentialgeometric geschlossener Flächen im Euklidischen Raum. I, Jber. Deutsch. Math. Verein. 63 (1960), no. Abt. 1, 117 – 136 (1960) (German). · Zbl 0096.36602
[132] Hsien-Chung Wang, Two-point homogeneous spaces, Ann. of Math. (2) 55 (1952), 177 – 191. · Zbl 0048.40503 · doi:10.2307/1969427 · doi.org
[133] Hsien-Chung Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1 – 32. · Zbl 0055.16603 · doi:10.2307/2372397 · doi.org
[134] André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). · Zbl 0137.41103
[135] A. Weil, Un théorème fondamental de Chern en géométrie riemannienne, Seminaire Bourbaki, No. 239, 1961-1962.
[136] H. Weyl, Raum, Zeit, Materie, 5th ed., Berlin, 1923; English transl., Dover, New York, 1950. · JFM 49.0616.02
[137] Hermann Weyl, Meromorphic Functions and Analytic Curves, Annals of Mathematics Studies, no. 12, Princeton University Press, Princeton, N. J., 1943. · Zbl 0061.15302
[138] H. Weyl, Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement, Vierteljarsch. Naturforsch. Ges. Zürich 61 (1916), 40-72; Selecta Hermann Weyl, pp. 148-178, Birkhäuser Verlag, Basel, 1956.
[139] Wen-Tsun Wu, Sur les classes caractéristiques des structures fibrées sphériques, Actualités Sci. Ind., no. 1183, Hermann & Cie, Paris, 1952 (French). Publ. Inst. Math. Univ. Strasbourg 11, pp. 5 – 89, 155 – 156. · Zbl 0049.12602
[140] Hidehiko Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21 – 37. · Zbl 0096.37201
[141] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. · Zbl 0051.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.