×

zbMATH — the first resource for mathematics

On the stability of the Boussinesq equations. (English) Zbl 0136.23402

Keywords:
fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Serrin, J., On the stability of viscous fluid motions. Arch. Rational Mech. Anal. (1) 3, 1–13(1959). · Zbl 0086.20001
[2] Conrad, P., & W. Criminale, On the stability of time-dependent laminar motion. Zeit. angew. Math. Phys. (in press). · Zbl 0131.41903
[3] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability. Oxford 1961.
[4] Serrin, J., Mathematical Principles of Classical Fluid Mechanics. Handbuch der Physik, Vol. VIII/1, pp. 253–258, Berlin-Göttingen-Heidelberg: Springer 1959.
[5] Sani, R. L., & L. E. Scriven, Convective instability. To be submitted to Phys. Fluids.
[6] Ukhovskii, M. R., & V. I. Iudovich, On the equation of steady-state convection. Prik. Math. Mek. 27, 353–370 (1963).
[7] Sani, R. L., On the non-existence of subcritical instabilities in fluid layers heated from below. J. Fluid Mech. 20, 315–319 (1964). · Zbl 0139.22002
[8] Malkus, W. V. R., & G. Veronis, Finite-amplitude cellular convection. J. Fluid Mech. 4, 225–260 (1958). · Zbl 0082.39603
[9] Segel, L. A., The nonlinear interaction of two disturbances in the thermal convection problem. J. Fluid Mech. 14, 97–114 (1962). · Zbl 0112.41903
[10] Segel, L. A., & J. T. Stuart, On the question of the preferred mode in cellular thermal convection. J. Fluid Mech. 13, 289–306 (1962). · Zbl 0116.19101
[11] Stuart, J. T., Non-linear Effects in Hydrodynamic Stability. Proc. 10th Int. Congr. Appl. Mech., Stresa 63–97 (1960).
[12] Sparrow, E. M., R. J. Goldstein, & V. K. Jonssen, Thermal instability in a horizontal fluid layer: Effect of boundary conditions and the non-linear temperature profile. J. Fluid Mech. 18, 513–528 (1964). · Zbl 0128.20401
[13] Courant, R., & D. Hilbert, Methods of Mathematical Physics. Vol. I. New York: Inter science 1953. · Zbl 0051.28802
[14] Payne, L., & H. Weinberger, An exact stability bound for Navier-Stokes flow in a sphere. Conference on Non-linear Differential Equations (R. Langer, Editor). Univ. of Wisconsin 1961.
[15] Velte, W., Über ein Stabilitätskriterium der Hydrodynamik. Arch. Rational Mech. Anal. (1), 9, 9–20(1962). · Zbl 0108.39403
[16] Sobelev, S. L., Applications of Functional Analysis in Mathematical Physics. Translations of Mathematical Monographs. Vol. 7. Amer. Math. Soc. 1963.
[17] Courant, R., & D. Hilbert, Methoden der mathematischen Physik, Vol. II. Berlin: Springer 1937. · Zbl 0017.39702
[18] Dryden, H. L., F. Murnaghan, & H. Bateman, Hydrodynamics, pp. 374–378. Dover 1956.
[19] Stuart, J. T., Hydrodynamic Stability. Laminar Boundary Layers (L. Rosenhead, Editor), pp. 4+2–579. Oxford 1963.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.