Gross, L. The Cauchy problem for the coupled Maxwell and Dirac equations. (English) Zbl 0137.32401 Commun. Pure Appl. Math. 19, 1-15 (1966). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 41 Documents Keywords:functional analysis PDF BibTeX XML Cite \textit{L. Gross}, Commun. Pure Appl. Math. 19, 1--15 (1966; Zbl 0137.32401) Full Text: DOI References: [1] Bargmann, Group theoretical discussion of relativistic wave equations, Proc. Nat. Acad. Sci. U.S.A. 34 pp 211– (1948) · Zbl 0030.42306 [2] Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Symposia Pure Math. 4 pp 33– (1961) · Zbl 0195.41103 · doi:10.1090/pspum/004/0143037 [3] Kato, Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Amer. Math. Soc. 70 pp 195– (1951) · Zbl 0044.42701 [4] Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan. 5 pp 208– (1953) · Zbl 0052.12601 [5] Lang, Introduction to Differentiable Manifolds (1962) · Zbl 0103.15101 [6] Segal, Mathematical Problems of Relativistic Physics (1963) · Zbl 0112.45307 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.