×

Mordells Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper. (German) Zbl 0137.40503


PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] A. Grothendieck,Éléments de géométrie algébrique (rédigés avec la collaboration deJ. Dieudonné): I. Le langage des schémas,Publ. Math., I.H.E.S., no 4, Paris, 1960; II. Étude globale élémentaire de quelques classes de morphismes,Publ. Math., I.H.E.S., no 8, Paris, 1961; III. Étude cohomologique des faisceaux cohérents (Première Partie),Publ. Math., I.H.E.S., no 11, Paris, 1961; III. Étude cohomologique des faisceaux cohérents (Seconde Partie),Publ. Math., I.H.E.S., no 17, 1963; IV. Étude locale des schémas et des morphismes de schémas (Première Partie),Publ. Math., I.H.E.S., no 20, 1964.
[2] I. Manin, Beweis eines Analogons der Mordellschen Vermutung für algebraische Kurven über Funktionenkörpern,Dokl. Akad. Nauk. SSSR, 152 (1963), 1061–1063, Engl. Übersetzung inSoviet Mathematics, 4 (1963), 1505–1507.
[3] J.-P. Serre, Faisceaux algébriques cohérents,Ann. Math., 61 (1955), 197–278. · Zbl 0067.16201 · doi:10.2307/1969915
[4] C. L. Siegel, Über einige Anwendungen Diophantischer Approximationen,Abh. Preuss. Akad. Wiss., Phys.-Math. Klasse, 1929, 1–69.
[5] O. Zariski, The problem of minimal models in the theory of algebraic surfaces,Am. Journal Math., 80 (1958), 146–194, bes. p. 150. · Zbl 0085.36202 · doi:10.2307/2372827
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.