Andreotti, Aldo; Vesentini, Edoardo Carleman estimates for the Laplace-Beltrami equation on complex manifolds. (English) Zbl 0138.06604 Publ. Math., Inst. Hautes Étud. Sci. 25, 313-362 (1965); Erratum. Ibid. 27, 757-758 (1965). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 160 Documents Keywords:complex functions PDF BibTeX XML Cite \textit{A. Andreotti} and \textit{E. Vesentini}, Publ. Math., Inst. Hautes Étud. Sci. 25, 313--362 (1965; Zbl 0138.06604) Full Text: DOI Numdam Numdam EuDML References: [1] A. Andreotti,Coomologia sulle varietà complesse, II:Summer course on “ Funzioni e varietà complesse {” sponsored by C.I.M.E., Varenna (Italy), Summer 1963, Edizioni Cremonese, Roma.} · Zbl 0178.42801 [2] A. Andreotti etH. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes,Bull. Soc. Math. France, 90 (1962), 193–259. · Zbl 0106.05501 [3] A. Andreotti etE. Vesentini, Sopra un teorema di Kodaira,Ann. Sc. Norm. Sup. Pisa (3)15 (1961), 283–309. [4] A. Andreotti etE. Vesentini, Les théorèmes fondamentaux de la théorie des espaces holomorphiquement complets,Séminaire Ehresmann, 4 (1962–63), 1–31, Paris, Secrétariat Mathématique. [5] A. Andreotti eE. Vesentini, Disuguaglianze di Carleman sopra una varietà complessa,Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8),35 (1963), 431–434. · Zbl 0138.06603 [6] N. Bourbaki,Espaces vectoriels topologiques, chap. I–IV, Hermann, Paris, 1953 et 1955. · Zbl 0050.10703 [7] E. Calabi andE. Vesentini, On compact, locally symmetric Kähler manifols,Ann. of Math., 71(1960), 472–507. · Zbl 0100.36002 [8] T. Carleman, Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes,Ark. Mat. Astr. och Fys., 26 B (1939), no 17, 1–9=Édition complète des articles, Malmö, 1960 497–505. · Zbl 0022.34201 [9] J. Dieudonné etL. Schwartz, La dualité dans les espaces () et (),Ann. Inst. Fourier, Grenoble,1 (1950), 61–101. [10] K. O. Friedrichs, On the differentiability of the solutions of linear elliptic differential equations,Comm. Pure Applied Math., 6 (1953), 299–325. · Zbl 0051.32703 [11] A. Grothendieck,Espaces vectoriels topologiques, 2e éd., Publicação da Sociedade de Matemática de S. Paulo, São Paulo, 1958. · Zbl 0058.33401 [12] F. Hirzebruch,Neue topologische Methoden in der algebraischen Geometrie, Berlin, Springer, 1958. · Zbl 0129.29801 [13] L. Hörmander, On the uniqueness of Cauchy problem,Math. Scand., 6 (1958), 213–225. · Zbl 0088.30201 [14] K. Kodaira, On a differential geometric method in the theory of analytic stacks,Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 1268–1273. · Zbl 0053.11701 [15] G. Köthe,Topologische lineare Räume, I, Berlin, Springer, 1960. [16] E. Magenes eG. Stampacchia, I problemi al contorno per le equazioni differenziali di tipo ellittico,Ann. Sc. Norm. Sup. Pisa (3),12 (1958), 247–358. · Zbl 0082.09601 [17] L. Schwartz, Homomorphismes et applications complètement continues,C. R. Acad. Sci. Paris, 236 (1953), 2472–2473. · Zbl 0050.33301 [18] J. Sebastião e Silva, Su certe classi di spazi localmente convessi importanti per le applicazioni,Rend. Math. e Appl. (5)14 (1955), 398–410. [19] Séminaire H. Cartan, 1953–1954, Paris, École Normale Supérieure; Cambridge, Mass., Mathematics Department of M.I.T., 1955. [20] J.-P. Serre, Un théorème de dualité,Comment. Math. Helv., 29 (1955), 9–26. · Zbl 0067.16101 [21] E. Vesentini,Coomologia sulle varietà complesse, I:Summer course on “Funzioni e varietà complesse{” sponsored by C.I.M.E., Varenna (Italy), Summer 1963, Edizioni Cremonese, Roma.} · Zbl 0178.42704 [22] A. Weil,Introduction à l’étude des variétés kählériennes, Hermann, Paris, 1958. [23] K. Yano andS. Bochner, Curvature de Betti numbers,Ann. of Math. Studies, no 32, Princeton University Press, 1953. · Zbl 0051.39402 [24] G. Zin, Esistenza e rappresentazione di funzioni analitiche, le quali, su una curva di Jordan, si riducono a una funzione assegnata,Ann. di Mat. (4)34 (1953), 365–405. · Zbl 0051.30902 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.