×

The solution by iteration of nonlinear functional equations in Banach spaces. (English) Zbl 0138.08202


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] L. P. Belluce and W. A. Kirk, Fixed-point theorems for families of contraction mappings, Pacific J. Math. 18 (1966), 213 – 217. · Zbl 0149.10701
[2] Felix E. Browder, On the iteration of transformations in noncompact minimal dynamical systems, Proc. Amer. Math. Soc. 9 (1958), 773 – 780. · Zbl 0092.12602
[3] Felix E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100 – 1103. · Zbl 0135.17601
[4] Felix E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1272 – 1276. · Zbl 0125.35801
[5] Felix E. Browder, Mapping theorems for noncompact nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 337 – 342. · Zbl 0133.08101
[6] Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041 – 1044. · Zbl 0128.35801
[7] Felix E. Browder, Fixed point theorems for nonlinear semicontractive mappings in Banach spaces, Arch. Rational Mech. Anal. 21 (1966), 259 – 269. · Zbl 0144.39101
[8] F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566 – 570. , https://doi.org/10.1090/S0002-9904-1966-11543-4 F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571 – 575. · Zbl 0138.08201
[9] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004 – 1006. · Zbl 0141.32402
[10] M. A. Krasnosel\(^{\prime}\)skiĭ, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.) 10 (1955), no. 1(63), 123 – 127 (Russian).
[11] W. V. Petryshyn, On the construction of fixed points and solutions of nonlinear equations with demicompact mappings, (to appear). · Zbl 0138.39802
[12] Helmut Schaefer, Über die Methode sukzessiver Approximationen, Jber. Deutsch. Math. Verein. 59 (1957), no. Abt. 1, 131 – 140 (German). · Zbl 0077.11002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.