×

On differentiable imbeddings of simply-connected manifolds. (English) Zbl 0138.18705


Keywords:

topology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291 – 310. · Zbl 0124.16301
[2] W. Browder, Homotopy type of differentiable manifolds, pp. 42-46, Colloquium on Algebraic Topology, Aarhus, 1962. · Zbl 0144.22701
[3] André Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47 – 82 (French). · Zbl 0102.38603
[4] André Haefliger, Knotted (4\?-1)-spheres in 6\?-space, Ann. of Math. (2) 75 (1962), 452 – 466. · Zbl 0105.17407
[5] André Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962/1963), 155 – 176 (French). · Zbl 0186.27302
[6] M. Hirsch, On the fibre homotopy type of normal bundles of manifolds, (unpublished). · Zbl 0129.39403
[7] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504 – 537. · Zbl 0115.40505
[8] R. Lashof, Some theorems of Browder and Novikov on homotopy equivalent manifolds with an application, Printed Notes, Univ. of Chicago, Chicago, Illinois.
[9] S. P. Novikov, Diffeomorphisms of simply-connected manifolds, Soviet Math. Dokl. 3 (1962), 540-543. · Zbl 0142.40804
[10] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17 – 86 (French). · Zbl 0057.15502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.