×

The generation of convex hulls. (English) Zbl 0138.37405


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Abe, Yoshibumi, Tomio Kubota andHajimu Yoneguchi: Some properties of a set of points in Euclidean space. Kodai Math. Seminar Reports 117-119 (1950). · Zbl 0045.25502
[2] Banach, S.: Théorie des opérations linéaires. Warsaw 1932.
[3] Bauer, Heinz: Über die Fortsetzung positiver Linearformen. Bayer. Akad. Wiss. Math.-Nat. Kl. S.-B. 1957, 177-190 (1958). · Zbl 0096.08102
[4] ?? Silovscher Rand und Dirichletsches Problem. Ann. Inst. Fourier (Grenoble)11, 89-134 (1961). · Zbl 0098.06902
[5] ?? Axiomatische Behandlung des Dirichletschen Problems für elliptische und parabolische Differentialgleichungen. Math. Ann.146, 1-59 (1962). · Zbl 0107.08003
[6] Bishop, E., andK. de Leeuw: The representation of linear functionals by measures on sets of extreme points. Ann. Inst. Fourier (Grenoble)9, 305-331 (1959). · Zbl 0096.08103
[7] Björck, Göran: The set of extreme points of a compact convex set. Ark. Mat.3, 463-468 (1958). · Zbl 0079.12601
[8] Bonnesen, F., andW. Fenchel: Theorie der konvexen Körper. Berlin: Springer 1934. (Reprint Chelsea, New York 1948.) · Zbl 0008.07708
[9] Bonnice, W. E.: A generalization of a theorem of Carathéodory. Am. Math. Soc. Notices8, 252-253 (1961).
[10] Bourbaki, N.: Integration. Paris: Hermann (1952), Chaps. I?IV, A. S. I. # 1175,
[11] Carathéodory, C.: Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann.64, 95-115 (1907). · JFM 38.0448.01
[12] Choquet, Gustave: Theory of capacities. Ann. Inst. Fourier (Grenoble)5, 131-295 (1955). · Zbl 0064.35101
[13] ?? Le théorème de représentation intégrale dans les ensembles convexes compacts. Ann. Inst. Fourier (Grenoble)10, 333-344 (1960). · Zbl 0096.08201
[14] Danzer, L., B. Grünbaum andV. Klee: Helly’s theorem and its relatives. Proceedings of Symposia in Pure Mathematics Vol.7, ?Convexity?, Am. Math. Soc. (1962), 101-180.
[15] Davis, Chandler: Theory of positive linear dependence. Am. J. Math.76, 733-746 (1954). · Zbl 0058.25201
[16] Day, Mahlon M.: Normed linear spaces. Berlin-Göttingen-Heidelberg: Springer 1958. · Zbl 0082.10603
[17] Dunford, Nelson, andJacob T. Schwartz: Linear operators. Part I: General theory. New York: Interscience Pub. 1958. · Zbl 0084.10402
[18] Fichtenholz, G., etL. Kantorovich: Sur les opérations dans l’espace des functions bornées. Studia Math.5, 69-98 (1934).
[19] Gale, David: Linear combinations of vectors with non-negative coefficients. Am. Math. Monthly59, 46-47 (1952).
[20] Gossieaux, Anne-Marie, etGeorges Papy: Un théorème sur les espaces du typeF. Bull. Soc. Roy. Sci. Liège13, 146-150 (1944). · Zbl 0060.26104
[21] Halmos, Paul R.: Measure theory. New York: Van Nostrand 1950. · Zbl 0040.16802
[22] Hanner, O., andH. Rådström: A generalization of a theorem of Fenchel. Proc. Am. Math. Soc.2, 589-593 (1951). · Zbl 0043.16203
[23] Hewitt, Edwin: Integral representation of certain linear functionals. Ark. Mat.2, 269-282 (1952). · Zbl 0048.28605
[24] ??, andL. J. Savage: Symmetric measures on cartesian products. Trans. Am. Math. Soc.80, 470-501 (1955). · Zbl 0066.29604
[25] Hildebrandt, T. H.: On bounded linear functional operations. Trans. Am. Math. Soc.36, 868-875 (1934). · Zbl 0010.30303
[26] Karlin, S.: Bases in Banach spaces. Duke Math. J.15, 971-985 (1948). · Zbl 0032.03102
[27] Klee, Victor: Extremal structure of convex sets. Arch. Math.8, 234-240 (1957). · Zbl 0079.12501
[28] – The generation of affine hulls. Acta Math. Szeged24 (1963), to appear. · Zbl 0122.38405
[29] ?? Idempotency of the hull-formationH ?. Z. Wahrscheinlichkeitstheorie1, 258-262 (1963). · Zbl 0115.10002
[30] Krein, M., andV. ?mulian: On regularly convex sets in the space conjugate to a Banach space. Ann. Math. (2)41, 556-583 (1940). · Zbl 0024.41305
[31] McKinney, R. L.: Positive bases for linear spaces. Trans. Am. Math. Soc.103, 131-148 (1962). · Zbl 0115.32901
[32] Namioka, Isaac: Partially ordered linear topological spaces. Mem. Am. Math. Soc.24, 50 pp. (1957). · Zbl 0105.08901
[33] Richter, Hans: Parameterfreie Abschätzung und Realisierung von Erwartungswerten. Bl. Deut. Ges. Vers.-Math.3, 147-162 (1957). · Zbl 0080.12603
[34] Robinson, C. V.: Spherical theorems of Helly type and congruence indices of spherical caps. Am. J. Math.64, 260-272 (1942). · Zbl 0063.06523
[35] Rubin, Herman, andOscar Wesler: A note on convexity in Euclideann-space. Proc. Am. Math. Soc.9, 522-523 (1958). · Zbl 0090.12702
[36] Sandgren, Lennart: On convex cones. Math. Scand.2, 19-28 (1954). · Zbl 0056.15702
[37] Schauder, J.: Über die Umkehrung linearer stetiger Funktionaloperationen. Studia Math.2, 1-6 (1930). · JFM 56.0353.02
[38] Steinitz, E.: Bedingt konvergente Reihen und konvexe Systeme I?II?III. J. reine angew. Math.143, 128-175 (1913);144, 1-40 (1914);146, 1-52 (1916). · JFM 44.0287.01
[39] Tomita, Minoru: On the regularly convex hull of a set in a conjugate Banach space. Math. J. Okayama Univ.3, 143-145 (1954). · Zbl 0055.10502
[40] Gurarii, V.I.: Inclinations of subspaces and conditional bases in Banach spaces. Soviet Math.3, 1028-1031 (1962). · Zbl 0199.43902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.