×

zbMATH — the first resource for mathematics

Continuous additive functionals of a Markov process with applications to processes with independent increments. (English) Zbl 0138.40901

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Getoor, R.K, Additive functionals of a Markov process, () · Zbl 0080.34803
[2] Getoor, R.K, Additive functionals and excessive functions, Ann. math. statist., 36, 409-422, (1965) · Zbl 0138.11401
[3] Meyer, P.A, Fonctionelles multiplicatives et additives de Markov, Ann. inst. Fourier, Grenoble, 12, 125-230, (1962) · Zbl 0138.40802
[4] Blumenthal, R.M, An extended Markov property, Trans. am. math. soc., 85, 52-72, (1957) · Zbl 0084.13602
[5] Šur, M.G; Šur, M.G, Continuous additive functionals of Markov processes and excessive functions, Dokl. akad. nauk. SSSR, Soviet math., 2, 365-368, (1961), Transl. · Zbl 0111.33204
[6] Blumenthal, R.M; Getoor, R.K; McKean, H.P, Markov processes with identical hitting distributions, Illinois J. math., 6, 402-420, (1962) · Zbl 0133.40903
[7] Blumenthal, R.M; Getoor, R.K, Local times for Markov processes, Wahrscheinlichkeitstheorie verwandte gebiete, 3, 50-74, (1964) · Zbl 0126.33701
[8] Motoo, M, Representations of a certain class of excessive functions and a generator of Markov process, (), 143-159 · Zbl 0109.11701
[9] Neveu, J, Une généralisation des processus à accroissements positifs indépendants, (), 36-61 · Zbl 0103.36303
[10] \scE. Hille and R. S. Phillips. “Functional Analysis and Semi-Groups.” Am. Math. Soc. Colloq. Publ., Vol. 31, revised ed. · Zbl 0392.46001
[11] Blumenthal, R.M; Getoor, R.K; Ray, D.B, On the distribution of first hits for the symmetric stable processes, Trans. am. math. soc., 99, 540-554, (1961) · Zbl 0118.13005
[12] Spitzer, F, Principles of random walk, (1964), Van Nostrand Princeton, New Jersey · Zbl 0119.34304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.