×

zbMATH — the first resource for mathematics

On the existence of boundary values of a class of Beppo Levi functions. (English) Zbl 0139.06301

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arne Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 1 – 13 (French). · Zbl 0023.14204 · doi:10.1007/BF02546325 · doi.org
[2] M. Brelot, Points irréguliers et transformations continues en théorie du potentiel, J. Math. Pures Appl. (9) 19 (1940), 319 – 337 (French). · JFM 66.0447.01
[3] A. P. Calderón, On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc. 68 (1950), 55 – 61. · Zbl 0035.18903
[4] L. Carleson, Selected problems on exceptional sets (mimeographed), Uppsala, 1961; pp. 1-81.
[5] Jacques Deny, Les potentiels d’énergie finie, Acta Math. 82 (1950), 107 – 183 (French). · Zbl 0034.36201 · doi:10.1007/BF02398276 · doi.org
[6] Jacques Deny, Sur la convergence de certaines intégrales de la théorie du potentiel, Arch. Math. (Basel) 5 (1954), 367 – 370 (French). · Zbl 0057.33104 · doi:10.1007/BF01898378 · doi.org
[7] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier, Grenoble 5 (1953 – 54), 305 – 370 (1955) (French). · Zbl 0065.09903
[8] D. C. Spencer, A function-theoretic identity, Amer. J. Math. 65 (1943), 147 – 160. · Zbl 0060.20603 · doi:10.2307/2371778 · doi.org
[9] Elias M. Stein, On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math. 106 (1961), 137 – 174. · Zbl 0111.08001 · doi:10.1007/BF02545785 · doi.org
[10] Hans Wallin, Continuous functions and potential theory, Ark. Mat. 5 (1963), 55 – 84 (1963). · Zbl 0134.09404 · doi:10.1007/BF02591115 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.