zbMATH — the first resource for mathematics

Quelques propriétés des fonctions surharmoniques associées à une équation uniformement elliptique de la forme \(Lu =-\sum_ i {\partial\over\partial x_ i} \left(\sum_ j a_{ij}{\partial u\over\partial x_ j}\right) = 0\). (French) Zbl 0139.06502

Full Text: DOI Numdam EuDML
[1] M. BRELOT, Introduction axiomatique de l’effilement, Ann. di Mat., 57 (1962), 77-95. · Zbl 0119.08902
[2] G. CHOQUET, LES noyaux réguliers en théorie du potentiel, C. R. Acad. Sci., Paris, 243 (1956), p. 635. · Zbl 0073.32104
[3] D. GILBARG et J. SERRIN, On isolated singularities of solutions of second order elliptic differential equations, Journal d’Anal. math., 4 (1954-1955), 309-340. · Zbl 0071.09701
[4] R. M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel. Ann. Inst. Fourier, 12 (1962), 415-571. · Zbl 0101.08103
[5] R. M. HERVÉ, Un principe du maximum pour LES sous-solutions locales d’une équation uniformément elliptique de la forme Lu = - ∑i ∂/∂xi (∑j aij ∂u/∂xj) = 0. Ann. Inst. Fourier, 14 (1964), 493-508. · Zbl 0129.07202
[6] W. LITTMAN, G. STAMPACCHIA et H. F. WEINBERGER, Regular points for elliptic equations with discontinuous coefficients, Ann. Sc. Norm. Sup. Pisa, 17 (1963), 45-79. · Zbl 0116.30302
[7] J. MOSER, On Harnack’s theorem for elliptic differential equations, Comm. pure appl. Math., 14 (1961), 577-591. · Zbl 0111.09302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.