Axiomatic theory of harmonic functions. Non-negative superharmonic functions. (English) Zbl 0139.06604

Ann. Inst. Fourier 15, No. 1, 283-312 (1965); Colloques Int. Centre nat. Rech. Sci. 146, 283-312 (1965).

Full Text: DOI Numdam EuDML


[1] H. BAUER, Axiomatische behandlung des dirichletschen problems für elliptische und parabolische differentialgleichungen, Math. Annalen, 146 (1962), 1-59. · Zbl 0107.08003
[2] N. BOBOC, C. CONSTANTINESCU, A. CORNEA, Sur le problème de Dirichlet dans l’axiomatique des fonctions harmoniques, Comptes rendus Acad. Sci., Paris, 256 (1963), 2754-2757. · Zbl 0117.07602
[3] N. BOBOC, C. CONSTANTINESCU, A. CORNEA, Axiomatic theory of harmonic functions. Balayage, Ann. Inst. Fourier (to appear). · Zbl 0138.36603
[4] M. BRELOT, Axiomatique des fonctions harmoniques et surharmoniques dans un espace localement compact, Séminaire de théorie du potentiel (Séminaire Brelot-Choquet-Deny), 2 (1958) No. 1, 40 pages.
[5] M. BRELOT, Lectures on potential theory, Tata Institute of Fundamental Research, Bombay (1960). · Zbl 0098.06903
[6] C. CONSTANTINESCU, A. CORNEA, On the axiomatic of harmonic functions I, Ann. Inst. Fourier, 13 (1964), 373-388. · Zbl 0122.34001
[7] J. L. DOOB, Probability methods applied to the first boundary value problem, Proc. 3rd Berkeley Symp. on Math. Stat. and Prob. 1954-1955 (1956), 49-80. · Zbl 0074.09101
[8] R.-M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. · Zbl 0101.08103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.