×

zbMATH — the first resource for mathematics

On the state diagram of a linear operator and its adjoint in locally convex spaces. I. (English) Zbl 0139.08301

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bourbaki, N.: Espaces vectoriels topologiques. Act. Sci. Industr. 1229 (1955). · Zbl 0066.35301
[2] Browder, F. E.: Functional analysis and partial differential equations. I. Math. Ann.138, 55-79 (1959). · Zbl 0086.10301 · doi:10.1007/BF01369666
[3] Goldberg, S.: Linear operators and their conjugates. Pacific J. Math.9, 69-79 (1959). · Zbl 0088.08902
[4] ?? Closed linear operators and associated continuous linear operators. Pacific J. Math.12, 183-186 (1962). · Zbl 0124.32603
[5] Hille, E., andR. S. Phillips: Functional analysis and semigroups. Am. Math. Soc. Colloq. Pub.31, revised edition (1957). · Zbl 0078.10004
[6] Husain, T.: The open mapping and closed graph theorems in topological vector spaces. Oxford Math. Monographs (1965). · Zbl 0124.06301
[7] Komura, Y.: Some examples in linear topological spaces. Math. Ann.153, 150-162 (1964). · Zbl 0149.33604 · doi:10.1007/BF01361183
[8] Köthe, G.: Topologische lineare Räume. Berlin-Göttingen-Heidelberg: Springer-Verlag 1960.
[9] Krishnamurthy, V.: On the state diagram of a linear operator and its adjoint. Math. Ann.141, 153-160 (1960). · Zbl 0096.08502 · doi:10.1007/BF01360169
[10] ?? Conjugate locally convex spaces. Math. Z.87. 334-344 (1965). · Zbl 0132.34802 · doi:10.1007/BF01113203
[11] Mochizuki, N.: On fully complete spaces. Tohoku Math. J. II13, 485-490 (1961). · Zbl 0111.10804 · doi:10.2748/tmj/1178244251
[12] Ptak, V.: Completeness and the open mapping theorem. Bull. Soc. Math. France86, 41-74 (1958). · Zbl 0082.32502
[13] Taylor, A. E., andC. J. Halberg: General theorems about a bounded linear operator and its conjugate. J. reine angew. Math.198, 93-111 (1957). · Zbl 0078.10301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.