Ritter, K. A method for solving maximum-problems with a nonconcave quadratic objective function. (English) Zbl 0139.13105 Z. Wahrscheinlichkeitstheor. Verw. Geb. 4, 340-351 (1966). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 20 Documents Keywords:operations research PDF BibTeX XML Cite \textit{K. Ritter}, Z. Wahrscheinlichkeitstheor. Verw. Geb. 4, 340--351 (1966; Zbl 0139.13105) Full Text: DOI References: [1] Beale, E. M. L., On minimizing a convex function subject to linear inequalities, J. roy. statist. Soc. Ser. B, 17, 173-184 (1955) · Zbl 0068.13701 [2] Karlin, S., Mathematical methods and theory in games, programming, and economics. Vol. I (1959), London-Paris: Addison Wesley Pub. Co., London-Paris · Zbl 0139.12704 [3] KirchgÄssner, K., Ein Verfahren zur Maximierung linearer Funktionen in nichtkonvexen Bereichen, Z. angew. Math. Mech., 42, 22-24 (1962) · Zbl 0108.33301 [4] Kuhn, H. W., and A. W. Tucker: Non-linear programming. Proc. Second Berkeley Sympos. Math. Statist. Probability 481-492 (1951). · Zbl 0044.05903 [5] Orden, A.; Graves, R. L.; Wolfe, P., Minimization of indefinite quadratic functions with linear constraints, Recent advances in mathematical programming (1963), New York: McGraw Hill, New York [6] Rosen, I. B., The gradient projection method for nonlinear programming. Part I, Linear constraints, J. Soc. industr. appl. Math., 8, 181-218 (1960) · Zbl 0099.36405 [7] Ritter, K., Stationary points of quadratic maximum-problems, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 4, 149-158 (1965) · Zbl 0128.39703 [8] Ritter, K.: über das Maximum-Problem für nicht-konkave quadratische Funktionen. Deutsche Luft- und Raumfahrt, Forschungsbericht 65-17. [9] Wolfe, P., The simplex-method for quadratic programming, Econometrica, 27, 382-398 (1959) · Zbl 0103.37603 [10] Zoutendijk, G., Methods of feasible directions (1960), Amsterdam-London-New York-Princeton: Elsevier Pub. Co., Amsterdam-London-New York-Princeton · Zbl 0097.35408 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.