Homotopy equivalences in a principal fiber space. (English) Zbl 0139.16602


Full Text: DOI EuDML


[1] Arkowitz, M., andC. R. Curjel: The group of homotopy equivalences of a space. Bull. Amer. Math. Soc.70, 293-296 (1964). · Zbl 0129.15401
[2] Barcus, W. D., andM. G. Barratt: On the homotopy classification of the extensions of a fixed map. Trans. Amer. Math. Soc.88, 57-74 (1958). · Zbl 0095.16801
[3] Brown, E. H.: Cohomology theories. Ann. of Math.75, 467-484 (1962). · Zbl 0101.40603
[4] ?: Abstract homotopy theory. A.M.S. Summer Topology Institute, Seattle 1963.
[5] Eckmann, B., andP. J. Hilton: Group-like structures in general categories II, equalizers, limits, lengths. Math. Ann.151, 150-186 (1963). · Zbl 0115.01403
[6] Kahn, D. W.: The group of homotopy equivalences. Math. Z.84, 1-8 (1964). · Zbl 0129.38804
[7] Maclane, S.: Homology. Berlin-Göttingen-Heidelberg: Springer 1963.
[8] Nomura, Y.: A generalization of suspension theorems. Nagoya Math. J.19, 159-167 (1961). · Zbl 0114.14501
[9] ?: An application of the path-space technique to the theory of triads. Nagoya Math. J.22, 169-188 (1963). · Zbl 0123.39702
[10] Peterson, F. P., andE. Thomas: A note on non-stable cohomology operations. Bol. Soc. Math. Mexicana3, 13-18 (1958). · Zbl 0121.39604
[11] Shih, W.: On the groupE[X] of homotopy equivalence maps. Bull. Amer. Math. Soc.70, 361-365 (1964). · Zbl 0129.38803
[12] Sugawara, M.: On the homotopy-commutativity of groups and loop spaces. Mem. Coll. Sci. Univ. Kyoto, Ser. A Math.33, 257-269 (1960). · Zbl 0113.16903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.