zbMATH — the first resource for mathematics

A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight. (English) Zbl 0943.65034
The paper presents an algorithm that uses stochastic spherical-radial rules for the numerical computation of multiple integrals. These rules have higher accuracy and better convergence properties than simple Monte Carlo methods. The Fortran implemetation of the algorithm (RANRTH) is discussed, too. An example from a computational finance application is included (\(n\) variables, \(n > 100\)).

65D32 Numerical quadrature and cubature formulas
65C05 Monte Carlo methods
91G60 Numerical methods (including Monte Carlo methods)
Full Text: DOI
[1] Anderson, T.W; Olkin, I; Underhill, L.G, Generation of random orthogonal matrices, SIAM J. sci. comput., 8, 625-629, (1987) · Zbl 0637.65004
[2] Chan, T.F; Lewis, J.G, Computing standard deviations: accuracy, Commun. ACM, 22, 526-531, (1979) · Zbl 0427.65097
[3] R. Caflisch, W. Morokoff, Quasi-Monte Carlo computation of a finance problem, Proceedings of the Workshop on Quasi-Monte Carlo Methods and Their Applications, Statistics Research and Consultancy Unit, Hong Kong Baptist University, 1996, pp. 15-30.
[4] P.J. Davis, P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1984. · Zbl 0537.65020
[5] S.M. Ermakov, V.G. Zolotukhin, Theory of Probability and Applications, American Mathematical Society Translational, Vol. 5, American Mathematical Society, Providence, RI, 1960, pp. 428-431.
[6] K.-T. Fang, Y. Wang, Number Theoretic Methods in Statistics, Chapman & Hall, London, 1994. · Zbl 0925.65263
[7] G.S. Fishman, Monte Carlo, Springer, New York, 1996.
[8] Genz, A; Monahan, J, Stochastic integration rules for infinite regions, SIAM J. sci. comput., 19, 426-439, (1998) · Zbl 0916.65019
[9] Haber, S, Stochastic quadrature formulas, Math. comp., 23, 751-764, (1969) · Zbl 0204.48601
[10] J.M. Hammersley, D.C. Handscomb, Monte Carlo Methods, Chapman & Hall, London, 1964.
[11] Joy, C; Boyle, P; Tan, T, Quasi-Monte Carlo methods in numerical finance, Management sci., 42, 926-938, (1996) · Zbl 0880.90006
[12] P. L’Ecuyer, Combined multiple recursive random number generators, Oper. Res. 44 (1996) pp. 816-822. · Zbl 0904.65004
[13] Marsaglia, G; Tsang, W.W, A fast, easily implemented method for sampling from decreasing or symmetric unimodal density functions, SIAM J. sci. statist. comput., 5, 349-359, (1984) · Zbl 0573.65116
[14] Monahan, J; Genz, A, Spherical – radial integration rules for Bayesian computation, J. amer. statist. assoc., 92, 664-674, (1997) · Zbl 0889.62019
[15] I.P. Mysovskikh, The Approximation of multiple integrals by using interpolatory cubature formulae, in: R.A. DeVore, K. Scherer (Eds.), Quantitative Approximation, Academic Press, New York, 1980, pp. 217-243. · Zbl 0457.41029
[16] I.P. Mysovskikh, Interpolatory Cubature Formulas, Nauka, Moscow, 1981 (in Russian). · Zbl 0537.65019
[17] Siegel, A.F; O’Brien, F; Monte Carlo integration methods with exactness for low order polynomials, Unbiased, SIAM. J. sci. stat. comput., 6, 169-181, (1983)
[18] Ninomiya, S; Tezuka, S, Toward real-time pricing of complex financial derivatives, Appl. math. finance, 3, 1-20, (1996) · Zbl 1097.91530
[19] Papageorgiou, A; Traub, J, Beating Monte Carlo, Risk, 9, 6, 63-65, (1996)
[20] S. Paskov, J. Traub, Faster valuation of financial derivatives, J. Portfolio Management Fall (1995) 113-120.
[21] Stewart, G.W, The efficient generation of random orthogonal matrices with an application to condition estimation, SIAM J. numer. anal., 17, 403-409, (1980) · Zbl 0443.65027
[22] A.H. Stroud, The Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, NJ, 1971. · Zbl 0379.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.