×

zbMATH — the first resource for mathematics

Über ein verallgemeinertes Dirichletsches Problem für die Minimalflächengleichung und hebbare Unstetigkeiten ihrer Lösungen. (German) Zbl 0141.09601

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Aronszajn, N., F. Mulla, andP. Szeptycki: On spaces of potentials connected withL p-classes. Techn. Rep. No. 28, 110 pp., Dept. of Math., Univ. of Kansas, 1963. · Zbl 0121.09604
[2] Bers, L.: Isolated singularities of minimal surfaces. Ann. Math.53, 364-386 (1951). · Zbl 0043.15901 · doi:10.2307/1969547
[3] Calkin, J. W.: Functions of several variables and absolute continuity, I. Duke Math. J.6, 170-186 (1940). · Zbl 0026.39202 · doi:10.1215/S0012-7094-40-00614-7
[4] Carathéodory, C.: Über das lineare Maß von Punktmengen ? eine Verallgemeinerung des Längenbegriffs. Nachr. Königl. Ges. Wissensch. Göttingen, Math.-Phys. Kl., 404-426 (1914). · JFM 45.0443.01
[5] Carleson, L.: Selected problems on exceptional sets. 103 pp., Uppsala 1961. · Zbl 0114.05903
[6] Courant, R.: Dirichlet’s principle, conformal mapping, and minimal surfaces. New York: Intersci. Publ. 1950. · Zbl 0040.34603
[7] Douglas, J.: Solution of the problem of Plateau. Trans. Am. Math. Soc.33, 263-321 (1931). · JFM 57.1542.03 · doi:10.1090/S0002-9947-1931-1501590-9
[8] Finn, R.: Isolated singularities of solutions of non-linear partial differential equations. Transact. Americ. Math. Soc.75, 385-404 (1953). · Zbl 0053.39205
[9] ?? On equations of minimal surface type. Ann. Math.60, 397-416 (1954). · Zbl 0058.32501 · doi:10.2307/1969841
[10] ?? New estimates for equations of minimal surface type. Arch. Rat. Mech. Anal.14, 337-375 (1963). · Zbl 0133.04601 · doi:10.1007/BF00250712
[11] Fuglede, B.: Extremal length and functional completion. Acta Math.98, 171-219 (1957). · Zbl 0079.27703 · doi:10.1007/BF02404474
[12] Hausdorff, F.: Dimension und äußeres Maß. Math. Ann.79, 157-179 (1919). · JFM 46.0292.01 · doi:10.1007/BF01457179
[13] Heinz, E.: Über die Lösungen der Minimalflächengleichung. Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl., 51-56 (1952). · Zbl 0048.15401
[14] Hopf, E.: On an inequality for minimal surfacesz=z (x, y). J. Rat. Mech. Anal.2, 519-522 (1953). · Zbl 0051.12601
[15] Morrey, C.B.: Functions of several variables and absolute continuity II. Duke Math. J.6, 187-215 (1940). · JFM 66.1225.01 · doi:10.1215/S0012-7094-40-00615-9
[16] Nitsche, J. C. C.: Minimal surfaces. Vervielfältigte Vorlesungsnotizen, Univ. of Minnesota, 19 pp., 1957/58.
[17] ?? Über eine mit der Minimalflächengleichung zusammenhängende analytische Funktion und den Bernsteinschen Satz. Arch. Math.7, 417-419 (1956). · Zbl 0079.37701 · doi:10.1007/BF01899019
[18] Nitsche, Joh., u.Joachim Nitsche: Über reguläre Variationsprobleme. Rend. Circ. Mat. Palermo, (2)8, 346-353 (1959). · Zbl 0100.09901 · doi:10.1007/BF02843698
[19] Radó, T.: The problem of the least area and the problem of Plateau. Math. Z.32, 763-796 (1930). · JFM 56.0436.01 · doi:10.1007/BF01194665
[20] ?? On the problem of Plateau. Ergebn. d. Math. u. ihrer Grenzgebiete, Bd. 2. Berlin: Springer 1933.
[21] Serrin, J.: A priori estimates for solution of the minimal surface equation. Arch. Rat. Mech. Anal.14, 376-383 (1963). · Zbl 0117.07304 · doi:10.1007/BF00250713
[22] ?? Local behavior of solutions of quasi-linear equations. Acta Math.111, 247-302 (1964). · Zbl 0128.09101 · doi:10.1007/BF02391014
[23] Tsuji, M.: Potential Theory in Modern Function Theory. Tokyo: Maruzen Co. 1959. · Zbl 0087.28401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.