The Martin boundary for random walk. (English) Zbl 0141.15601

Full Text: DOI


[1] D. R. Cox and Walter L. Smith, A direct proof of a fundamental theorem of renewal theory, Skand. Aktuarietidskr. 36 (1953), 139 – 150. · Zbl 0053.26801
[2] J. L. Doob, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433 – 458; erratum 993. · Zbl 0101.11503
[3] J. L. Doob, J. L. Snell, and R. E. Williamson, Application of boundary theory to sums of independent random variables., Contributions to probability and statistics, Stanford Univ. Press, Stanford, Calif., 1960, pp. 182 – 197. · Zbl 0094.32202
[4] B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1954. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. · Zbl 0056.36001
[5] Paul-Louis Hennequin, Processus de Markoff en cascade, Ann. Inst. H. Poincaré 18 (1963), 109 – 195 (1963) (French). · Zbl 0141.15802
[6] G. A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math. 4 (1960), 313 – 340. · Zbl 0094.32103
[7] Walter L. Smith, A frequency-function form of the central limit theorem, Proc. Cambridge Philos. Soc. 49 (1953), 462 – 472. · Zbl 0053.09603
[8] Frank Spitzer, Principles of random walk, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1964. · Zbl 0979.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.