×

zbMATH — the first resource for mathematics

Conditions under which all the bounded linear maps are compact. (English) Zbl 0141.32102

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Banach, S.: Opérations Linéaires. New York: Chelsea 1955.
[2] Bessaga, C., andA. Pe?czy?ski: On bases and unconditional convergence in Banach spaces. Studia Math.17, 151-164 (1958). · Zbl 0084.09805
[3] Civin, P., andB. Yood: Quasi-reflexive spaces. Proc. Am. Math. Soc.8, 906-911 (1957). · Zbl 0080.31204 · doi:10.1090/S0002-9939-1957-0090020-6
[4] Day, M.: Normed Linear Spaces. Berlin-Göttingen-Heidelberg: Springer 1958. · Zbl 0082.10603
[5] Dunford, N., andJ. Schwartz: Linear Operators Part I. New York: Interscience 1958. · Zbl 0084.10402
[6] Goldberg, S., andE. Thorp: On some open questions concerning strictly singular operators. Proc. Am. Math. Soc.14, 344-336 (1963). · Zbl 0115.33303 · doi:10.1090/S0002-9939-1963-0145361-3
[7] Grothendieck, A.: Sur les applications linéaires faiblement compactes d’espaces du typeC (K). Canad. J. Math.5, 129-173 (1953). · Zbl 0050.10902 · doi:10.4153/CJM-1953-017-4
[8] Kato, T.: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. d’Analyse Math.6, 261-322 (1958). · Zbl 0090.09003 · doi:10.1007/BF02790238
[9] Pe?czy?ski, A.: Projections in certain Banach spaces. Studia Math.19, 209-228 (1960). · Zbl 0104.08503
[10] Phillips, R.: On linear transformations. Trans. Am. Math. Soc.48, 516-541 (1940). · Zbl 0025.34202 · doi:10.1090/S0002-9947-1940-0004094-3
[11] Taylor, A.: Introduction to Functional Analysis. New York: Wiley 1958. · Zbl 0081.10202
[12] Whitley, R.: Strictly singular operators and their conjugates. Trans. Am. Math. Soc.113, 252-261 (1964). · Zbl 0124.06603 · doi:10.1090/S0002-9947-1964-0177302-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.