×

zbMATH — the first resource for mathematics

On a fixed point theorem for nonlinear P-compact operators in Banach space. (English) Zbl 0142.11201

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Altman, A fixed point theorem in Hilbert space, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 19 – 22, III (English, with Russian summary). · Zbl 0077.31902
[2] Felix E. Browder, The solvability of non-linear functional equations, Duke Math. J. 30 (1963), 557 – 566. · Zbl 0119.32503
[3] Felix E. Browder, Variational boundary value problems for quasi-linear elliptic equations of arbitrary order, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 31 – 37. · Zbl 0117.07102
[4] Felix E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862 – 874. · Zbl 0127.31901
[5] S. Kaniel, Quasi-compact nonlinear operators in Banach space and applications, Illinois J. Math. (to appear). · Zbl 0134.32502
[6] M. A. Krasnoselsky, Topological methods in the theory of nonlinear integral equations, State Publ. House, Moscow, 1956.
[7] George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341 – 346. · Zbl 0111.31202
[8] W. V. Petryshyn, On the extension and the solution of nonlinear operator equations, Illinois J. Math. 10 (1966), 255 – 274. · Zbl 0139.31503
[9] W. V. Petryshyn, On nonlinear \?-compact operators in Banach space with applications to constructive fixed-point theorems, J. Math. Anal. Appl. 15 (1966), 228 – 242. · Zbl 0149.10602 · doi:10.1016/0022-247X(66)90114-4 · doi.org
[10] Erich Rothe, Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen, Compositio Math. 5 (1938), 177 – 197 (German). · Zbl 0018.13304
[11] J. Schauder, Der Fixpunksatz in Functionalraumen, Studia Math. 2 (1930), 171-180. · JFM 56.0355.01
[12] Marvin Shinbrot, a fixed point theorem, and some applications, Arch. Rational Mech. Anal. 17 (1964), 255 – 271. · Zbl 0156.38502 · doi:10.1007/BF00282289 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.