×

zbMATH — the first resource for mathematics

Structure of categories. (English) Zbl 0142.25401

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. Eckmann and P. J. Hilton, Group-like structures in general categories. II. Equalizers, limits, lengths, Math. Ann. 151 (1963), 150 – 186. · Zbl 0115.01403
[2] Peter Freyd, Abelian categories. An introduction to the theory of functors, Harper’s Series in Modern Mathematics, Harper & Row, Publishers, New York, 1964. · Zbl 0121.02103
[3] H. Gaifman, Infinite Boolean polynomials. I, Fund. Math. 54 (1964), 229 – 250. · Zbl 0126.26404
[4] Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119 – 221 (French). · Zbl 0118.26104
[5] A. W. Hales, On the non-existence of free complete Boolean algebras, Fund. Math. 54 (1964), 45 – 66. · Zbl 0119.26003
[6] J. R. Isbell, Adequate subcategories, Illinois J. Math. 4 (1960), 541 – 552. · Zbl 0104.01704
[7] J. R. Isbell, Two set-theoretical theorems in categories, Fund. Math. 53 (1963), 43 – 49. · Zbl 0114.01302
[8] J. R. Isbell, Subjects, adequacy, completeness and categories of algebras. [Subobjects, adequacy, completeness and categories of algebras], Rozprawy Mat. 36 (1964), 33. · Zbl 0133.26703
[9] John R. Isbell, Epimorphisms and dominions, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 232 – 246. J. M. Howie and J. R. Isbell, Epimorphisms and dominions. II, J. Algebra 6 (1967), 7 – 21. · Zbl 0211.33303
[10] Daniel M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294 – 329. · Zbl 0090.38906
[11] F. Lawvere, Functorial semantics of algebraic theories, thesis, Columbia University, 1963. · Zbl 0119.25901
[12] Saunders Mac Lane, Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40 – 106. · Zbl 0324.55001
[13] J. C. Shepherdson, Inner models for set theory. III, J. Symbolic Logic 18 (1953), 145 – 167. · Zbl 0051.03801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.