Quadratic forms over arbitrary fields. (Quadratische Formen in beliebigen Körpern.) (German) Zbl 0142.27203


11E81 Algebraic theory of quadratic forms; Witt groups and rings
Full Text: DOI EuDML


[1] Artin, E.: Über die Zerlegung definiter Funktionen in Quadrate. Abh. Hamburg5, 100-115 (1927) · doi:10.1007/BF02952513
[2] ?, u.O. Schreier: Algebraische Konstruktion reeller Körper. Abh. Hamburg5, 85-99 (1927). · doi:10.1007/BF02952512
[3] Cassels, J.W.S.: On the representation of rational functions as sums of squares. Acta Arithm.9, 79-82 (1964). · Zbl 0131.25001
[4] Chevalley, C.: The algebraic theory of spinors. Columbia Univ. Press 1954. · Zbl 0057.25901
[5] Gross, H., andH.R. Fischer: Non real fieldsk and infinite dimensionalk-vectorspaces. Math. Ann.159, 285-308 (1965). · Zbl 0132.00704 · doi:10.1007/BF01362447
[6] Lenz, H.: Einige Ungleichungen aus der Algebra der quadratischen Formen. Arch. Math.14, 373-382 (1963). · Zbl 0132.00801 · doi:10.1007/BF01234972
[7] O’Meara, O.T.: Introduction to quadratic forms. Berlin 1963.
[8] Pfister, A.: Darstellung von ? 1 als Summe von Quadraten in einem Körper. London J. of Math.40, 159-165 (1965). · Zbl 0131.25002 · doi:10.1112/jlms/s1-40.1.159
[9] ?: Multiplikative quadratische Formen. Arch. Math.16, 363-370 (1965). · Zbl 0146.26001 · doi:10.1007/BF01220043
[10] Pfister, A.: Multiplikative quadratische Formen. Vortrag auf der Zahlentheorie-Tagung in Oberwolfach 1964 (erscheint demnächst).
[11] Witt, E.: Theorie der quadratischen Formen in beliebigen Körpern. J. reine angew. Math.176, 31-44 (1937). · Zbl 0015.05701 · doi:10.1515/crll.1937.176.31
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.