×

zbMATH — the first resource for mathematics

Orientability of manifolds for generalized homology theories. (English) Zbl 0142.40602

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200 – 208. · Zbl 0104.17405
[2] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7 – 38. · Zbl 0108.17705
[3] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl. 1, 3 – 38. · Zbl 0146.19001 · doi:10.1016/0040-9383(64)90003-5 · doi.org
[4] W. Browder, Homotopy type of differentiable manifolds, Notes, Aarhus Colloquium on Algebraic Topology, Aarhus, 1962. · Zbl 0144.22701
[5] Edgar H. Brown Jr., Cohomology theories, Ann. of Math. (2) 75 (1962), 467 – 484. · Zbl 0101.40603 · doi:10.2307/1970209 · doi.org
[6] A. Dold, Relations between ordinary and extraordinary cohomology, Notes, Aarhus Colloquium on Algebraic Topology, Aarhus, 1962. · Zbl 0145.20104
[7] Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223 – 255. · Zbl 0203.25402 · doi:10.2307/1970341 · doi.org
[8] James Eells Jr. and Nicolaas H. Kuiper, Manifolds which are like projective planes, Inst. Hautes Études Sci. Publ. Math. 14 (1962), 5 – 46.
[9] Samuel Eilenberg and Norman E. Steenrod, Axiomatic approach to homology theory, Proc. Nat. Acad. Sci. U. S. A. 31 (1945), 117 – 120. · Zbl 0061.40504
[10] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. · Zbl 0047.41402
[11] Michel A. Kervaire, A manifold which does not admit any differentiable structure, Comment. Math. Helv. 34 (1960), 257 – 270. · Zbl 0145.20304 · doi:10.1007/BF02565940 · doi.org
[12] J. M. Kister, Microbundles are fibre bundles, Bull. Amer. Math. Soc. 69 (1963), 854 – 857. · Zbl 0117.16701
[13] J. Milnor, Microbundles, Mimeographed, Princeton Univ., Princeton, N. J., 1961. · Zbl 0124.38404
[14] J. Milnor, Topological manifolds and smooth manifolds, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 132 – 138. J. Milnor, Microbundles. I, Topology 3 (1964), no. suppl. 1, 53 – 80. · Zbl 0124.38404 · doi:10.1016/0040-9383(64)90005-9 · doi.org
[15] L. S. Pontryagin, Smooth manifolds and their applications in homotopy theory, American Mathematical Society Translations, Ser. 2, Vol. 11, American Mathematical Society, Providence, R.I., 1959, pp. 1 – 114. · Zbl 0084.19002
[16] Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391 – 406. · Zbl 0099.39202 · doi:10.2307/1970239 · doi.org
[17] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17 – 86 (French). · Zbl 0057.15502 · doi:10.1007/BF02566923 · doi.org
[18] C. T. C. Wall, Classification of (\?-1)-connected 2\?-manifolds, Ann. of Math. (2) 75 (1962), 163 – 189. · Zbl 0218.57022 · doi:10.2307/1970425 · doi.org
[19] George W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227 – 283. · Zbl 0124.38302
[20] -, Some aspects of stable homotopy theory, Notes, Aarhus Colloquium on algebraic Topology, Aarhus, 1962. · Zbl 0151.31101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.