×

zbMATH — the first resource for mathematics

Semigroups certain of whose subsemigroups have identities. (English) Zbl 0143.03203

PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] R. H. Brück: A survey of binary systems. Springer, Berhn, 1958.
[2] A. H. Clifford, G. B. Preston: The algebraic theory of semigroups, Vol. I. Math. Surveys No. 7, Amer. Math. Soc, Providence, R. I., 1961. · Zbl 0111.03403
[3] P. H. H. Fantham: On the classification of a certain type of semigroup. Proc. London Math. Soc. (3) 10 (1960), 409-427. · Zbl 0228.20035
[4] B. Kolibiarová: On semigroups, every subsemigroup of which has a left identify. Mat.-Fyz. Časopis Slovensk. Akad. Vied 7 (1957), 177-182
[5] B. Kolibiarová: On semigroups, every left ideal of which has a one-sided identity. Mat.-Fyz. Časopis Slovensk. Akad. Vied 10 (1960), 9-17
[6] B. Kolibiarová: On semigroups, every principal left ideal of which has an identity. Mat.-Fyz. Časopis Slovensk. Akad. Vied 11 (1961), 275-281
[7] M. Petrich: Sur certaines classes de demi-groupes, I. Acad. Roy. Belg. Bull. CI. Sci. 49 (1963), 785-798. · Zbl 0124.25704
[8] M. Petrich: The maximal semilattice decomposition of a semigroup. Math. Zeitschrift 85 (1964), 68-82. · Zbl 0124.25801
[9] Š. Schwarz: Contribution to the theory of periodic semigroups. Czechoslovak Math. J. 3 (1953), 7-21 · Zbl 0053.34803
[10] N. N. Vorob’ev: Associative systems of which every subsystem has an identity. Doklady Akad. Nauk SSSR 88 (1953), 393-396
[11] N. N. Vorob’ev: On associative systems of which every left ideal has an identity. Leningrad. Gos. Ped. Inst. Uc. Zap. 103 (1955), 83-90
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.