×

zbMATH — the first resource for mathematics

On Schwarz differentiability. IV. (English) Zbl 0143.07402

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Auerbach, Sur les dérivées généralisées,Fund. Math.,8 (1926), p. 49. (The author had no access to this memoir.)
[2] Z. Charzyński, Sur les fonctions dont la dérivée symétrique est partout finie,Fund Math.,21 (1933), p. 214.
[3] J. A. Clarkson, A property of derivatives,Bull. Amer. Math. Soc. 53 (1947), p. 124. · Zbl 0032.27102
[4] I. S. Gál, On the fundamental theorem of the calculus,Trans. Amer. Math. Soc.,86, No. 2 (1957), p. 309. · Zbl 0079.28003
[5] F. C. Hsiang, On differentiable functions,Bull. Amer. Math. Soc. 66 (1960), p. 382. · Zbl 0094.26101
[6] A. Khintchine, Recherches sur la structure des fonctions mesurables,Fund. Math.,9 (1927), p. 212. · JFM 53.0229.01
[7] B. K. Lahiri, A note on derivative,Bull. Cal. Math. Soc.,50, No. 2. (1958), p. 68.
[8] B. K. Lahiri, On non-uniform differentiability,Amer. Math. Monthly,67, No. 7. (1960), p. 649. · Zbl 0100.05501
[9] S. Marcus, On a theorem of Denjoy and on approximate derivative,Monatsh. Math.,66 (1962), p. 435. · Zbl 0111.05804
[10] S. Mazurkiewicz, O pierwzej pochodnej uogólnionej (Sur la dérivée premiěre généralisée),Prace. mat. fiz.,28 (1917), p. 79. (The author had no access to this memoir.)
[11] S. Mazurkiewicz, Sur la dérivée première généralisée,Fund. Math.,11 (1928), p. 145.
[12] S. N. Mukhopadhyay, On Schwarz differentiability-I. Forth-coming inProc. Nat. Acad. Sc. India.
[13] S. N. Mukhopadhyay, On Schwarz differentiability-II.Rev. Roum. Math. pures. Appl.,9 No. 9 (1964), p. 859. · Zbl 0143.07401
[14] I. P. Natanson,Theory of functions of a real variable, Vol. II (New York, 1960), p. 36. · Zbl 0091.05404
[15] S. Saks,Theory of the integral (Warszawa, 1937), p. 261. · Zbl 0017.30004
[16] W. Sierpiński, Sur une hypothèse de M. Mazurkiewicz,Fund. Math.,11 (1928), p. 148.
[17] E. Szpilarajn, Remarque sur la dérivée symétrique,Fund. Math.,21 (1933), p. 226.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.