×

Formulas and theorems for the special functions of mathematical physics. 3rd enlarged ed. (English) Zbl 0143.08502

Die Grundlehren der mathematischen Wissenschaften. 52. Berlin-Heidelberg-New York: Springer-Verlag. VII, 508 p. (1966).

Digital Library of Mathematical Functions:

§10.15 Derivatives with Respect to Order ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions
§10.22(vi) Compendia ‣ §10.22 Integrals ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions
§10.32(iv) Compendia ‣ §10.32 Integral Representations ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions
§10.38 Derivatives with Respect to Order ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions
§10.43(vi) Compendia ‣ §10.43 Integrals ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions
§10.60(iv) Compendia ‣ §10.60 Sums ‣ Spherical Bessel Functions ‣ Chapter 10 Bessel Functions
§10.9(iv) Compendia ‣ §10.9 Integral Representations ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions
§11.5(iii) Compendia ‣ §11.5 Integral Representations ‣ Struve and Modified Struve Functions ‣ Chapter 11 Struve and Related Functions
Chapter 11 Struve and Related Functions
Nicholson-type Integral ‣ §12.12 Integrals ‣ Properties ‣ Chapter 12 Parabolic Cylinder Functions
§12.5(iv) Compendia ‣ §12.5 Integral Representations ‣ Properties ‣ Chapter 12 Parabolic Cylinder Functions
Chapter 12 Parabolic Cylinder Functions
§13.10(vi) Other Integrals ‣ §13.10 Integrals ‣ Kummer Functions ‣ Chapter 13 Confluent Hypergeometric Functions
§13.23(iv) Integral Transforms in terms of Whittaker Functions ‣ §13.23 Integrals ‣ Whittaker Functions ‣ Chapter 13 Confluent Hypergeometric Functions
§14.11 Derivatives with Respect to Degree or Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions
Heine’s Integral ‣ §14.12(ii) 1 < x < ∞ ‣ §14.12 Integral Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions
§14.18(iv) Compendia ‣ §14.18 Sums ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions
§14.1 Special Notation ‣ Notation ‣ Chapter 14 Legendre and Related Functions
§14.25 Integral Representations ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions
§14.3(iii) Alternative Hypergeometric Representations ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions
§14.5(v) = μ 0 , = ν ± 1 2 ‣ §14.5 Special Values ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions
§14.7(iv) Generating Functions ‣ §14.7 Integer Degree and Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions
Chapter 14 Legendre and Related Functions
(25.5.21) ‣ §25.5(iii) Contour Integrals ‣ §25.5 Integral Representations ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions
§25.5 Integral Representations ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions
(25.6.1) ‣ §25.6(i) Function Values ‣ §25.6 Integer Arguments ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions
(25.6.2) ‣ §25.6(i) Function Values ‣ §25.6 Integer Arguments ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions
§25.6(i) Function Values ‣ §25.6 Integer Arguments ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions
§8.1 Special Notation ‣ Notation ‣ Chapter 8 Incomplete Gamma and Related Functions
Notations B ‣ Notations
Notations I ‣ Notations
Notations P ‣ Notations
Notations P ‣ Notations
Notations Q ‣ Notations
Notations Q ‣ Notations