zbMATH — the first resource for mathematics

Further properties of T-fractions. (English) Zbl 0143.29501

Full Text: DOI EuDML
[1] Jones, W. B.: Contributions to the theory of Thron continued fractions. Ph. D. Thesis, Vanderbilt University, Nashville, Tennessee, 68 pp. (1963).
[2] Leighton, W., andW. T. Scott: A general continued fraction expansion. Bull. Am. Math. Soc.45, 596-605 (1939). · Zbl 0021.33004 · doi:10.1090/S0002-9904-1939-07046-8
[3] Magnus, A.: Certain continued fractions associated with the Padé table. Math. Z.78, 361-374 (1962). · Zbl 0104.05102 · doi:10.1007/BF01195180
[4] Natanson, I. P.: Theory of functions of a real variable. Translated from the Russian byLeo F. Boron. New York: Frederick Ungar Publishing Co. 1955.
[5] Perron, O.: Die Lehre von den Kettenbrüchen. Band II. Stuttgart: B. G. Teubner 1957. · Zbl 0077.06602
[6] Stieltjes, T. J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse8, 1-22 (1894);9, A, 1-47 (1894); Oeuvres2, 402-566. Also published in Mémoires présentés par divers savants à l’Académie des sciences de l’Institut National de France33, 1-196.
[7] Szegö, G.: Orthogonal polynomials.23 Am. Math. Soc. Col., New York, 1959. · Zbl 0089.27501
[8] Thron, W. J.: Some properties of continued fractions 1+d 0 z+K(z/1+d n z). Bull. Am. Math. Soc.54, 206-218 (1948). · Zbl 0039.29101 · doi:10.1090/S0002-9904-1948-08985-6
[9] ?? The theory of functions of a complex variable. New York: John Wiley and Sons, Inc. 1953. · Zbl 0050.07503
[10] Wall, H. S.: Analytic theory of continued fractions. Princeton, New Jersey: D. Van Nostrand Co., Inc. 1948. · Zbl 0035.03601
[11] Widder, D. V.: The Laplace transform. Princeton, New Jersey: Princeton University Press 1946. · Zbl 0060.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.