Accurate partial difference methods. II: Non-linear problems. (English) Zbl 0143.38204

Full Text: DOI EuDML


[1] Lax, P. D.: On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients. Comm. Pure and Appl. Math.14, 497-520 (1961). · Zbl 0102.11701
[2] Stetter, H. J.: On the convergence of characteristic finite-difference methods of high accuracy for quasi-linear hyperbolic equations. Num. Math.3, 321-344 (1961). · Zbl 0104.10404
[3] Strang, G.: Accurate partial difference methods I: Linear Cauchy problems. Arch. Rat. Mech. Anal. (to appear). · Zbl 0113.32303
[4] Albrecht, J.: Zum Differenzenverfahren bei parabolischen Differentialgleichungen. Z. Angew. Math. Mech.37, 202-212 (1957). · Zbl 0079.33901
[5] Moore, R. H.: A Runge-Kutta procedure for the Goursat problem in hyperbolic partial differential equations. Arch. Rat. Mech. Anal.7, 37-63 (1961). · Zbl 0097.12004
[6] John, F.: On the integration of parabolic equations by difference methods. Comm. Pure Appl. Math.5, 155-211 (1952). · Zbl 0047.33703
[7] Forsythe, G. E., andW. Wasow: Finite-Difference Methods for Partial Differential Equations. New York: John Wiley & Sons 1960. · Zbl 0099.11103
[8] Lax, P. D., andR. D. Richtmyer: Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math.9, 267-293 (1956). · Zbl 0072.08903
[9] Lax, P. D., andB. Wendroff: On the stability of difference schemes with variable coefficients. Comm. Pure Appl. Math. (to appear). · Zbl 0113.32301
[10] Lax, P. D., andB. Wendroff: Systems of conservation laws. Comm. Pure Appl. Math.13, 217-237 (1960). · Zbl 0152.44802
[11] Kreiss, H.-O.: Über implizite Differenzmethoden für partielle Differential-gleichungen. Num. Math.5, 24-47 (1963). · Zbl 0111.12804
[12] Parter, S. V.: Stability, convergence, and pseudo-stability of finite-difference equations for an over-determined problem. Num. Math.4, 277-292 (1962). · Zbl 0112.07802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.