Lower bounds for \(\sum h(m)/m\) for arithmetical functions \(h\) similar to real residue-characters. (English) Zbl 0144.27803


11N56 Rate of growth of arithmetic functions


number theory
Full Text: DOI


[1] Bateman, P. T., Theorems implying the non-vanishing of ∑ \(_χ(m)m^{−1}\) for real residue-characters, J. Indian Math. Soc. (N.S.), 23, 101-115 (1959/1961) · Zbl 0228.10021
[2] Bombieri, E., Limitazioni riguardanti somme di caratteri reali e somme di funzioni completamente multiplicative, Ist. Lombardo Accad. Sci. Lett. Rend., A94, 642-649 (1960) · Zbl 0103.03301
[3] Fawaz, A. Y., The explicit formula for \(L_0(x)\), (Proc. London Math. Soc., 1 (1951)), 86-103, (3) · Zbl 0042.27302
[4] Gelfond, A. O., On an elementary approach to some problems from the field of the distribution of prime numbers, Vestnik Moskov. Univ. Ser. Fiz.-Mat. Estest. Nauk, 8, 21-26 (1953), (Russian) · Zbl 0051.03401
[5] Goldsmith, D. L., On a result of E. Bombieri concerning Dirichlet’s \(L\)-functions, Ist. Lombardo Accad. Sci. Lett. Rend., A99, 662-668 (1965) · Zbl 0163.04303
[6] Haselgrove, C. B., A disproof of a conjecture of Pólya, Mathematika, 5, 141-145 (1958) · Zbl 0085.27102
[7] Ingham, A. E., On two conjectures in the theory of numbers, Amer. J. Math., 64, 313-319 (1942) · Zbl 0063.02974
[8] Landau, E., Über einen Satz von Tschebyschef, Math. Ann., 61, 527-550 (1905)
[9] Lehman, R. S., On Liouville’s function, Math. Comp., 14, 311-320 (1960) · Zbl 0103.03204
[10] Wilf, H. S., On the monotonicity of certain Riesz means, J. London Math. Soc., 37, 121-122 (1962) · Zbl 0107.26702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.