Williams, R. F. Lebesgue area of maps from Hausdorff spaces. (English) Zbl 0144.30001 Acta Math. 102, 33-46 (1959). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Keywords:differentiation and integration, measure theory PDFBibTeX XMLCite \textit{R. F. Williams}, Acta Math. 102, 33--46 (1959; Zbl 0144.30001) Full Text: DOI References: [1] L. Cesari, Su di un teorrema di T. Radó sulla transformazioni continue,Atti del Reale Instituto Veneto di Scienze, Lettere ed Arti, Tom CI, Parte II (1942), 337–403. [2] L. Cesari,Surface Area, Annals of Mathematics Studies, no. 35, Princeton Univ. Press. 1956. · Zbl 0073.04101 [3] S. Eilenberg &N. Steenrod,Foundations of Algebraic Topology. Princeton Math. Series no. 15, Princeton, 1952. · Zbl 0047.41402 [4] H. Federer, Essential Multiplicity and Lebesgue area.Proc. Nat. Acad. Sci.,34 (1948), 611–616. · Zbl 0032.14903 · doi:10.1073/pnas.34.12.611 [5] –, On Lebesgue area.Ann. of Math., 61, no. 2 (1955), 289–353. · Zbl 0065.04002 · doi:10.2307/1969917 [6] W. Hurewicz &H. Wallman,Dimension Theory. Princeton Math. Series no. 4, Princeton, 1948. · Zbl 0036.12501 [7] T. Radó,Length and Area. Amer. Math. Soc. Coll. Publications, vol. XXX, 1948. [8] T. Radó &P. Reichelderfer,Continuous transformations in Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 75. Berlin, Springer 1955. · Zbl 0067.03506 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.