×

Asymptotic estimates for spectral functions connected with hypoelliptic differential operators. (English) Zbl 0144.36302


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bergendal, G., Convergence and summability of eigenfunction expansions connected with ellipitic differential operators. Medd. fr. Lunds univ. mat. sem15 (1959). · Zbl 0093.06901
[2] Besicovitch, A. S., Almost Periodic Functions. Cambridge, 1932. · Zbl 0004.25303
[3] Ganelius, J., Un théorème taubérien pour la transformation de Laplace. C. R. Acad. Sci. Paris242, 719–721 (1956). · Zbl 0070.10702
[4] Gortjakov, V. N., On the asymptotic behaviour of the spectral function of a class of hypoelliptic operators. Doklady Ak. Nauk152,3, p. 519–522 (1963).
[5] Goursat, E., Cours d’analyse mathématique2. Paris, 1924. · JFM 50.0150.02
[6] Hörmander, L., On the theory of general partial differential operators. Acta Mathematica94 (1955). · Zbl 0067.32201
[7] Hörmander, L. On interior regularity of the solutions of partial differential equations. Comm. of pure and appl. math.9 (1958). · Zbl 0081.31501
[8] Keldish, M. V., On a Tauberian theorem. Trudy Matematitjeskovo Instituta Imeni V. A. Steklova, Vol. XXXVIII, 77–86 (1951).
[9] Sz-Nagy, B., Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Berlin, 1942.
[10] Nilsson, N., Some estimates for eigenfunction expansions and spectral functions corresponding to elliptic differential operators. Math. Scand.9 (1961). · Zbl 0098.06801
[11] –, Some growth and ramification properties of certain integrals on algebraic manifolds. Arkiv för matematik5, 463 (1964). · Zbl 0168.42004
[12] Odhnoff, J., Operators generated by differential problems with eigenvalue parameters in equation and boundary condition. Medd. fr. Lunds univ. mat. sem.14 (1959). · Zbl 0138.36103
[13] Schwartz., L., Théorie des distributions, I–II Paris, 1950–1951.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.