Browder, F. E. Fixed point theorems for nonlinear semicontractive mappings in Banach spaces. (English) Zbl 0144.39101 Arch. Ration. Mech. Anal. 21, 259-269 (1966). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 45 Documents Keywords:functional analysis PDF BibTeX XML Cite \textit{F. E. Browder}, Arch. Ration. Mech. Anal. 21, 259--269 (1966; Zbl 0144.39101) Full Text: DOI OpenURL References: [1] Beurling, A., & A.E. Livingston, A theorem on duality mappings in Banach spaces. Arkiv Mat. 4, 405–411 (1962). · Zbl 0105.09301 [2] Brodski, M.S., & D.P. Milman, On the center of a convex set. Dokladi Akad. Nauk SSSR (N. S.) 59, 837–840 (1948). [3] Browder, F.E., Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 29, 862–874 (1963). · Zbl 0127.31901 [4] Browder, F.E., On a theorem of Beurling and Livingston. Canadian Jour. Math. 17, 367–372 (1965). · Zbl 0132.10602 [5] Browder, F.E., Multivalued monotone nonlinear mappings and duality mappings in Banach spaces. Transact. Amer. Math. Soc. 118, 338–351 (1965). · Zbl 0138.39903 [6] Browder, F.E., Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Proceedings Amer. Math. Soc. Symposium on Applied Math. 17, 24–49 (1965). [7] Browder, F.E., Existence of periodic solutions for nonlinear equations of evolution. Proc. Nat. Acad. Sci. 53, 1100–1103 (1965). · Zbl 0135.17601 [8] Browder, F.E., Fixed point theorems for non-compact mappings in Hilbert space. Proc. Nat. Acad. Sci. 53, 1272–1276 (1965). · Zbl 0125.35801 [9] Browder, F.E., Mapping theorems for noncompact nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. 54, 337–342 (1965). · Zbl 0133.08101 [10] Browder, F.E., Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. 54, 1041–1044 (1965). · Zbl 0128.35801 [11] Marr, R. de, Common fixed points for commuting contraction mappings. Pacific Jour. Math. 13, 1139–1141 (1963). · Zbl 0191.14901 [12] Edelstein, M., On fixed and periodic points under contractive mappings. Jour. London Math. Soc. 37, 74–79 (1962). · Zbl 0113.16503 [13] Edelstein, M., On nonexpansive mappings of Banach spaces. Proc. Cambridge Phil. Soc. 60, 439–447 (1964). · Zbl 0196.44603 [14] Kirk, W.A., A fixed point theorem for mappings which do not increase distance (to appear). · Zbl 0141.32402 [15] Lumer, G., & R.S. Phillips, Dissipative operators in Banach spaces. Pacific Jour. Math. 11, 679–698 (1961). · Zbl 0101.09503 [16] Minty, G.J., On a ”monotonicity” method for the solution of nonlinear equations in Banach spaces. Proc. Nat. Acad. Sci. 50, 1038–1041 (1963). · Zbl 0124.07303 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.