×

zbMATH — the first resource for mathematics

Spectrum of electrostatic modes in a cylindrical non-neutral plasma of arbitrary density. (English) Zbl 0965.76064
Summary: Using a finite difference method, we solve the eigenvalue problem governing small amplitude electrostatic modes in a cylindrical column of non-neutral plasma. The eigenvalue problem is considered as a system of differential equations. The finite difference approximation using a staggered grid converts this system to a generalized matrix eigenvalue problem, which is then solved by employing readily available library subroutines. Important features of the spectrum, such as degenerate eigenvalues sequences of eigenvalues, continua, and unstable modes, are well represented by the method.
MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
Software:
ERATO
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Levy, R.H., Diocotron instability in a cylindrical geometry, Phys. fluids, 8, 1288, (1965)
[2] Levy, R.H., Two new results in cylindrical diocotron theory, Phys. fluids, 11, 920, (1968)
[3] Briggs, R.J.; Daugherty, J.D.; Levy, R.H., Role of Landau damping in crossed-field electron beams and inviscid shear flow, Phys. fluids, 13, 421, (1970)
[4] Davidson, R.C., An introduction to the physics of nonneutral plasmas, 289, (1990)
[5] Corngold, N.R., Linear response of the two-dimensional pure electron plasma: quasi-modes for some model profiles, Phys. plasmas, 2, 620, (1995)
[6] Spencer, R.L.; Rasband, S.N., Damped diocotron quasi-modes of non-neutral plasmas and inviscid fluids, Phys. plasmas, 4, 53, (1997)
[7] Davidson, R.C.; Felice, G.M., Influence of profile shape on the diocotron instability in a non-neutral plasma column, Phys. plasmas, 5, 3497, (1998)
[8] Goswami, P.; Bhattacharyya, S.N.; Sen, A.; Maheshwari, K.P., Computation of the diocotron spectrum of a cylindrical non-neutral plasma, Phys. plasmas, 6, 3442, (1999)
[9] Davidson, R.C., An introduction to the physics of nonneutral plasmas, 240, (1990)
[10] Gould, R.W.; LaPointe, M.A., Cyclotron resonance in a pure electron plasma column, Phys. rev. lett., 67, 3685, (1991)
[11] Phys. fluids B, 4, 2038, (1992)
[12] Book, D.L., High-frequency electrostatic modes in non-neutral plasmas, Phys. plasmas, 2, 1398, (1995)
[13] Gould, R.W., Theory of cyclotron resonance in a cylindrical non-neutral plasma, Phys. plasmas, 2, 1404, (1995)
[14] Dubin, D.H.E., Theory of electrostatic fluid modes in a cold spheroidal non-neutral plasma, Phys. rev. lett., 66, 2076, (1991)
[15] Bollinger, J.J.; Heinzen, D.J.; Moore, F.L.; Itano, W.M.; Wineland, D.J.; Dubin, D.H.E., Electrostatic modes of ion-trap plasmas, Phys. rev. A, 48, 525, (1993)
[16] Weimer, C.S.; Bollinger, J.J.; Moore, F.L.; Wineland, D.J., Electrostatic modes as a diagnostic in Penning trap experiments, Phys. rev. A, 49, 3842, (1994)
[17] Tinkle, M.D.; Greaves, R.G.; Surko, C.M.; Spencer, R.L.; Mason, G.W., Low-order modes as diagnostics of spheroidal non-neutral plasmas, Phys. rev. lett., 72, 352, (1994)
[18] Tinkle, M.D.; Greaves, R.G.; Surko, C.M., Low-order longitudinal modes of single-component plasmas, Phys. plasmas, 2, 2880, (1995)
[19] Spencer, R.L., Numerical modeling of non-neutral plasmas, Non-neutral plasma physics II, 204, (1995)
[20] Dewar, R.L.; Greene, J.M.; Grimm, R.C.; Johnson, J.L., Numerical study of the magnetohydrodynamic spectra in tokamaks using Galerkin’s method, J. comput. phys., 18, 132, (1975)
[21] Appert, K.; Berger, D.; Gruber, R.; Rappaz, J., A new finite element approach to the normal mode analysis in magnetohydrodynamics, J. comput. phys., 18, 284, (1975) · Zbl 0319.76038
[22] Gruber, R., Finite hybrid elements to compute the ideal magnetohydrodynamic spectrum of an axisymmetric plasma, J. comput. phys., 26, 379, (1978) · Zbl 0372.76095
[23] Grimm, R.C.; Greene, J.M.; Johnson, J.L., Computation of the magnetohydrodynamic spectrum in axisymmetric toroidal confinement systems, Meth. comput. phys., 16, 253, (1976)
[24] Gruber, R.; Troyon, F.; Berger, D.; Bernard, L.C.; Rousset, S.; Schreiber, R.; Kerner, W.; Schneider, W.; Roberts, K.V., ERATO stability code, Comput. phys. commun., 21, 323, (1981)
[25] Grimm, R.C.; Dewar, R.L.; Manickam, J.; Jardin, S.C.; Glasser, A.H.; Chance, M.S., Resistive instabilities in tokamak geometry, Plasma physics contr. nucl. fusion research 1982, III, 35, (1983)
[26] Kerner, W., Large-scale complex eigenvalue problems, J. comput. phys., 85, 1, (1989) · Zbl 0685.65028
[27] Davidson, R.C., An introduction to the physics of nonneutral plasmas, 22, (1990)
[28] Davidson, R.C., An introduction to the physics of nonneutral plasmas, 226, (1990)
[29] Davidson, R.C., An introduction to the physics of nonneutral plasmas, 240, (1990)
[30] Davidson, R.C., An introduction to the physics of nonneutral plasmas, 248, (1990)
[31] Bhattacharyya, S.N.; Bhattacharjee, A., Continuous spectrum of a non-neutral plasma column, Phys. plasmas, 4, 895, (1997)
[32] Davidson, R.C., An introduction to the physics of nonneutral plasmas, 257, (1990)
[33] Wysocki, F.; Grimm, R.C., A new method for computing normal modes in axisymmetric toroidal geometry using a scalar form of ideal MHD, J. comput. phys., 66, 255, (1986) · Zbl 0613.76053
[34] Appert, K.; Berger, D.; Gruber, R.; Troyon, F.; Rappaz, J., Studium der eigenschwingungen eines zylindrischen plasmas mit der methode der finiten elemente, Zamp, 25, 229, (1974) · Zbl 0282.76088
[35] Greaves, R.G.; Tinkle, M.D.; Surko, C.M., Modes of a pure ion plasma at the Brillouin limit, Phys. rev. lett., 74, 90, (1995)
[36] Tinkle, M.D.; Greaves, R.G.; Surko, C.M., Modes of spheroidal ion plasmas at the Brillouin limit, Phys. plasmas, 3, 749, (1996)
[37] Sarid, E.; Anderegg, F.; Driscoll, C.F., Cyclotron resonance phenomena in a nonneutral multispecies ion plasma, Phys. plasmas, 2, 2895, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.