×

zbMATH — the first resource for mathematics

Beispiele zur Differentialtopologie von Singularitäten. (German) Zbl 0145.17804

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bredon, G.E.: Examples of differentiable group actions. Topology3, 115-122 (1965). · Zbl 0125.40102
[2] Brieskorn, E.: Examples of singular normal complex spaces which are topological manifolds. Proc. Nat. Acad. Sci.55, 1395-1397 (1966). · Zbl 0144.45001
[3] Hirzebruch, F.: 0(n)-Mannigfaltigkeiten, exotische Sphären, kuriose Involutionen. (Vorläufige Fassung eines Manuskripts.)
[4] Hsiang, W. C., andW. Y. Hsiang: Some results on differentiable actions. Bull. Amer. Math. Soc.72, 134-137 (1966). · Zbl 0132.19802
[5] Jänich, K.: Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarerG-Mannigfaltigkeiten ohne Rand. (Erscheint demnächst) · Zbl 0153.53703
[6] Kervaire, M. A., andJ. Milnor: Groups of homotopy spheres: I. Ann. of Math.77, 504-537 (1963) · Zbl 0115.40505
[7] Milnor, J.: On isolated singularities of hypersurfaces. (Manuskript)
[8] Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Publ. Math. de l’ Institut des hautes études scientifiques. No. 9. Paris 1961. · Zbl 0108.16801
[9] Levine, J.: Polynomial invariants of knots of codimension two. Anals of Math. (Erscheint demnächst.) · Zbl 0196.55905
[10] Pham, F.: Formules de Picard-Lefschetz généralisées et ramification des intégrales. Bull. Soc. Math. de France93, 333-367 (1965). · Zbl 0192.29701
[11] Prill, D.: On highly-connected homogeneous manifolds. Erscheint demnächst in Proc. Am. Math. Soc.
[12] Scheja, G.: Riemannsche Hebbarkeitssätze für Cohomologieklassen. Math. Ann.144, 345-360 (1961). · Zbl 0112.38001
[13] Weber, H.: Lehrbuch der Algebra, 2. Aufl., Bd. I. Braunschweig: Vieweg 1898.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.