×

zbMATH — the first resource for mathematics

On primary groups with countable basic subgroups. (English) Zbl 0146.04203

Keywords:
group theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. A. Beaumont and R. S. Pierce, Some invariants of \?-groups, Michigan Math. J. 11 (1964), 137 – 149. · Zbl 0126.26903
[2] Peter Crawley, An infinite primary abelian group without proper isomorphic subgroups., Bull. Amer. Math. Soc. 68 (1962), 463 – 467. · Zbl 0108.25701
[3] L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958. · Zbl 0091.02704
[4] Paul Hill, Certain pure subgroups of primary groups, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962), Scott, Foresman and Co., Chicago, Ill., 1963, pp. 311 – 314.
[5] Paul Hill, Pure subgroups having prescribed socles, Bull. Amer. Math. Soc. 71 (1965), 608 – 609. · Zbl 0132.27205
[6] Paul Hill and Charles Megibben, Minimal pure subgroups in primary groups, Bull. Soc. Math. France 92 (1964), 251 – 257. · Zbl 0214.04103
[7] P. D. Hill and C. K. Megibben, Quasi-closed primary groups, Acta Math. Acad. Sci. Hungar 16 (1965), 271 – 274 (English, with Russian summary). · Zbl 0209.33204 · doi:10.1007/BF01904835 · doi.org
[8] John Irwin, Carol Peercy, and Elbert Walker, Splitting properties of high subgroups, Bull. Soc. Math. France 90 (1962), 185 – 192. · Zbl 0106.02401
[9] Samir A. Khabbaz, Abelian torsion groups having a minimal system of generators, Trans. Amer. Math. Soc. 98 (1961), 527 – 538. · Zbl 0094.24603
[10] George Kolettis Jr., Semi-complete primary abelian groups, Proc. Amer. Math. Soc. 11 (1960), 200 – 205. · Zbl 0090.24603
[11] Charles Megibben, A note on a paper of Bernard Charles (Étude sur les sous-groupes d’un groupe abélien), Bull. Soc. Math. France 91 (1963), 453 – 454. · Zbl 0121.03203
[12] R. S. Pierce, Homomorphisms of primary abelian groups, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962), Scott, Foresman and Co., Chicago, Ill., 1963, pp. 215 – 310.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.