×

zbMATH — the first resource for mathematics

Pseudocompact algebras, profinite groups and class formations. (English) Zbl 0146.04702

Keywords:
group theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Artin, E; Tate, J, Class field theory, (1961), Harvard University Press Cambridge
[2] Auslander, M; Buchsbaum, D.A; Auslander, M; Buchsbaum, D.A, Homological dimension in Noetherian rings, Trans. am. math. soc., Trans. am. math. soc., 88, 194-206, (1958) · Zbl 0082.03402
[3] Brumer, A, Galois groups of extensions of number fields with given ramification, Michigan math. J., 13, 33-40, (1966) · Zbl 0141.04803
[4] Cartan, H; Eilenberg, S, Homological algebra, Princeton mathematics series, No. 19, (1956), Princeton · Zbl 0075.24305
[5] Cohn, P.M, Unique factorization in non commutative power series rings, (), 452-464 · Zbl 0148.26502
[6] Douady, A, Cohomologie des groupes compacts totalement discontinus, (), Exposé 189 · Zbl 0149.27701
[7] Gabriel, P, Des catégories abéliennes, Bull. soc. math. France, 90, 323-448, (1962) · Zbl 0201.35602
[8] {\scGrothendieck, A. and Dieudonné, J.} “Éléments de Géométrie Algébrique.” Publ. Math. IHES, Chapter O_{I}, Section 7.7.
[9] Kawada, Y, Cohomology of group extensions, J. fac. sci. Tokyo, 9, 417-431, (1963) · Zbl 0108.25501
[10] {\scLazard, M.} “Groupes Analytiques p-adiques.” Publ. Math. IHES.
[11] Leptin, H; Leptin, H, Lineare kompakte modulen und ringe, Math. Z., Math. Z., 66, 289-327, (1956) · Zbl 0077.04002
[12] Lyndon, R, Cohomology theory of groups with a single defining relation, Ann. math., 52, 650-665, (1950) · Zbl 0039.02302
[13] Serre, J.P, Corps locaux, (), No. 1296 · Zbl 0137.02601
[14] Serre, J.P, Cohomologie galoisienne, (), Unless otherwise noted the references are to Chapter I · Zbl 0812.12002
[15] Serre, J.P, Corps locaux et isogénies, (), Exposé 185 · Zbl 0137.02501
[16] Tate, J, Duality theorems in Galois cohomology, (), 288-295
[17] Zelinsky, D, Linearly compact modules and rings, Am. J. math., 85, 79-90, (1953) · Zbl 0050.10802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.