×

zbMATH — the first resource for mathematics

On the greatest prime factor of a quadratic polynomial. (English) Zbl 0146.05704

Keywords:
number theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Erdös, P., On the greatest prime factor of k=1 x f(k).J. London Math. Soc., 27 (1952), 379–384. · Zbl 0046.04102 · doi:10.1112/jlms/s1-27.3.379
[2] Hooley, C., An asymptotic formula in the theory of numbers.Proc. London Math. Soc., Ser. 3, 7 (1957), 396–413. · Zbl 0079.27301 · doi:10.1112/plms/s3-7.1.396
[3] –, On the number of divisors of quadratic polynomials.Acta Math., 110 (1963), 97–114. · Zbl 0116.03802 · doi:10.1007/BF02391856
[4] Ivanov, J., Über die Primteiler der Zahlen von der FormA+x 2.Bull. Acad. Sci. St. Petersburg, 3 (1895), 361–367.
[5] Landau, E.,Handbuch der Lehre von der Verteilung der Primzahlen. Leipzig, 1909. · JFM 40.0232.08
[6] Markov, A. A., Über die Primteiler der Zahlen von der Form 1+4x 2.Bull. Acad. Sci. St. Petersburg, 3 (1895), 55–59.
[7] Nagell, T., Généralisation d’un théorème de Tchebycheff.J. Math. Pures Appl. (8), 4 (1921), 343–356.
[8] Selberg, A., On an elementary method in the theory of primes.Norske Vid. Selsk. Forh., Trondhjem, 19, No. 18 (1947) 64–67. · Zbl 0041.01903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.