×

Submersions and immersions of manifolds. (English) Zbl 0146.19803


Keywords:

topology

References:

[1] Barcus, W. D.: Note on cross-sections overCW-complexes. Quart. J. Math. Oxford (2), 50-160 (1954). · Zbl 0056.16502
[2] Hirsch, M.: Immersions of manifolds. Trans. Amer. Math. Soc.53, 242-276 (1959). · Zbl 0113.17202 · doi:10.1090/S0002-9947-1959-0119214-4
[3] James, I. M.: A relation between Postnikov classes. Quart. J. Math. Oxford (2), 269-280 (1966). · Zbl 0146.44903 · doi:10.1093/qmath/17.1.269
[4] James, I. M., andE. Thomas: Note on the classification of cross-sections. Topology4, 351-359 (1965). · Zbl 0136.44202 · doi:10.1016/0040-9383(66)90033-4
[5] ??: On the enumeration of cross-sections. Topology5, 95-114 (1966). · Zbl 0141.40505 · doi:10.1016/0040-9383(66)90012-7
[6] Massey, W.: Normal vector fields on manifolds. Proc. A.M.S.12, 33-40 (1961). · Zbl 0100.19301 · doi:10.1090/S0002-9939-1961-0124914-0
[7] ?: On the Stiefel-Whitney classes of a manifold, Amer. J. Math.82, 92-102 (1960). · Zbl 0089.39301 · doi:10.2307/2372878
[8] ?: On the Stiefel-Whitney classes of a manifold. II. Proc. A.M.S.13, 938-942 (1962). · Zbl 0109.15902 · doi:10.1090/S0002-9939-1962-0142129-8
[9] Phillips, A.: Submersions of open manifolds. Thesis. Princeton University 1966.
[10] Spanier, E.: Algebraic Topology. New York: McGraw-Hill 1966. · Zbl 0145.43303
[11] Steenrod, N.: The topology of fiber bundles. Princeton University Press 1957. · Zbl 0077.16701
[12] Wu, W. T.: Classes charactéristiques eti-carrés d’une variété. C.R. Acad. Sci. (Paris)230, 918-920 (1950).
[13] ?: On the immersion ofC ?-3-manifolds in a Euclidean space. Sci. Sinica13, 335-336 (1964). · Zbl 0211.26505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.