×

zbMATH — the first resource for mathematics

Infinitesimale Transformationsgruppen komplexer Räume. (German) Zbl 0146.31102

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Behnke, H., u.F. Sommer: Theorie der analytischen Funktionen einer komplexen Veränderlichen. Berlin-Göttingen-Heidelberg: Springer 1955. · Zbl 0065.06102
[2] Bochner, S.: Compact groups of differentiable transformations. Ann. Math.46, 372-381 (1945). · Zbl 0063.00487 · doi:10.2307/1969157
[3] ??, andD. Montgomery: Groups of differentiable and real or complex analytic transformations. Ann. Math.46, 685-694 (1945). · Zbl 0061.04406 · doi:10.2307/1969204
[4] ?? ?? Locally compact groups of differentiable transformations. Ann. Math.47, 639-653 (1946). · Zbl 0061.04407 · doi:10.2307/1969226
[5] ?? ?? Groups on analytic manifolds. Ann. Math.48, 659-669 (1947). · Zbl 0030.07501 · doi:10.2307/1969133
[6] Bourbaki, N.: Espaces vectoriels topologiques. Paris: Hermann 1953/55. · Zbl 0050.10703
[7] Cartan, H.: Sur les groupes de transformations analytiques. Actualités Sci. Ind. 198 (1935). · JFM 61.0370.02
[8] – Espaces fibrés analytiques. Symposium Internacional de Topologia Algebraica. Mexico 1958.
[9] ?? Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes. Paris: Hermann 1961.
[10] Chevalley, C.: Theory of Lie groups. Princeton 1946. · Zbl 0063.00842
[11] Cohn, P. M.: Lie groups. Cambridge University Press 1961. · Zbl 0084.03201
[12] Forster, O.: Primärzerlegung in Steinschen Algebren. Math. Ann.154, 307-329 (1964). · Zbl 0135.12602 · doi:10.1007/BF01362567
[13] Grauert, H.: Ein Theorem der analytischen Garbentheorie. Publ. Math.5, 233-292 (1960). · Zbl 0100.08001
[14] ?? Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann.146, 331-368 (1962). · Zbl 0173.33004 · doi:10.1007/BF01441136
[15] ??, u.H. Kerner: Deformationen von Singularitäten komplexer Räume. Math. Ann.153, 236-260 (1964). · Zbl 0118.30401 · doi:10.1007/BF01360319
[16] ??, u.R. Remmert: Komplexe Räume. Math. Ann.136, 245-318 (1958). · Zbl 0087.29003 · doi:10.1007/BF01362011
[17] Gröbener, W.: Die Lie-Reihen und ihre Anwendungen. Berlin 1960. · Zbl 0141.08502
[18] Grothendieck, A.: Sur certains espaces de fonctions holomorphes I. Crelles J.192, 35-64 (1953). · Zbl 0051.08704 · doi:10.1515/crll.1953.192.35
[19] Gunning, R.: On Vitali’s theorem for complex spaces with singularities. J. Math. Mech.8, 133-141 (1959). · Zbl 0092.07503
[20] Holmann, H.: Komplexe Räume mit komplexen Transformationsgruppen. Math. Ann.150, 327-360 (1963). · Zbl 0156.30603 · doi:10.1007/BF01470762
[21] Kaup, W.: Holomorphe Vektorfelder und Transformationsgruppen komplexer Räume. Dissertation Erlangen 1962 und Schriftenreihe Math. Inst. Münster Heft 24. · Zbl 0173.33202
[22] Kerner, H.: über die Automorphismengruppen kompakter komplexer Räume. Arch. Math.11, 282-288 (1960). · Zbl 0112.31205 · doi:10.1007/BF01236946
[23] Lie, S.: Theorie der Transformationsgruppen. Leipzig 1888-1893.
[24] Marinescu, G.: Espaces vectoriels pseudotopologiques et théorie des distributions. Berlin 1963. · Zbl 0124.31602
[25] Montgomery, D., andL. Zippin: Topological transformation groups. New York 1955. · Zbl 0068.01904
[26] Mostow, G. D.: Lectures on Lie groups and Lie algebras. Yale Univ. · Zbl 0242.22012
[27] Nomizu, K.: Lie groups and differential geometry. Math. Soc. Japan 1956. · Zbl 0071.15402
[28] Otte, M.: Bemerkungen zur Darstellungstheorie komplexer Liegruppen. Bayer. Akad. d. Wiss. München 1964. · Zbl 0135.06902
[29] Rossi, H.: Vector fields on analytic spaces. Ann. Math.78, 455-467 (1963). · Zbl 0129.29701 · doi:10.2307/1970536
[30] Whitney, H.: Tangents to an analytic variety. Princeton 1964. · Zbl 0152.27701
[31] Yamabe, H.: Generalization of a theorem of Gleason. Ann. Math.58, 351-365 (1953). · Zbl 0053.01602 · doi:10.2307/1969792
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.