×

An extension theorem for separately continuous functions and its application to functional analysis. (English) Zbl 0146.36303


MSC:

46-XX Functional analysis
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] S. Banach: Théorie des opérations linéaires. Monografie Mathematyczne 1 (1932). · Zbl 0005.20901
[2] W. F. Eberlein: Weak compactness in Banach spaces. Proc. Nat. Ac. of Sci. USA 33 (1947), 51-53. · Zbl 0029.26902
[3] Z. Frolík: The topological product of two pseudocompact spaces. Czech. Math. J. 85 (1960), 339-349. · Zbl 0099.38503
[4] I. Glicksberg: Stone-Čech compactification of products. Trans. Am. Math. Soc. 90 (1959), 369-382. · Zbl 0089.38702
[5] A. Grothendieck: Critères de compacité dans le espaces functionnels généraux. Amer. J. Math. 74 (1952), 168-186. · Zbl 0046.11702
[6] G. Köthe: Topologische lineare Räume. Berlin (1960). · Zbl 0093.11901
[7] V. Pták: Weak compactness in convex topological vector spaces. Czech. Math. J. 79 (1954), 175-186. · Zbl 0057.09402
[8] V. Pták: A combinatorial lemma on systems of inequalities and its application to analysis. Czech. Math. J. 84 (1959), 629-630. · Zbl 0093.05601
[9] V. Pták: A combinatorial lemma on the existence of convex means and its application to weak compactness. Amer. Math. Soc, Proceedings of the Symposia in Pure Mathematics, 7 (1963), 437-450.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.